You are viewing the site in preview mode

Skip to main content

Table 2 Performance metrics for the binary classification task of healthy vs. disordered for male and female speakers

From: A hybrid approach for binary and multi-class classification of voice disorders using a pre-trained model and ensemble classifiers

Gender

Model

Accuracy

F1 Score

PR 0

RE 0

F1 0

PR 1

RE 1

F1 1

Male

VGGish-SVM

82.45 ± 2.77

82.99

0.91

0.87

0.89

0.54

0.64

0.58

VGGish-LR

75.35 ± 4.30

75.45

0.85

0.84

0.84

0.41

0.41

0.40

VGGish-MLP

77.09 ± 5.75

76.96

0.86

0.86

0.86

0.43

0.42

0.42

VGGish-EC

80.25 ± 5.70

79.66

0.86

0.89

0.88

0.51

0.44

0.47

wav2vec-SVM [45]

75.65 ± 5.81

-

0.91

0.82

0.87

0.50

0.69

0.58

MFCC-glottal-SVM [45]

74.48 ± 5.85

-

0.90

0.84

0.87

0.51

0.64

0.57

MFCC-SVM [45]

72.02 ± 7.75

-

0.89

0.88

0.88

0.54

0.56

0.55

HuBERT-SVM [45]

72.14 ± 7.93

-

0.89

0.85

0.87

0.50

0.59

0.54

Female

VGGish-SVM

70.03 ± 3.07

70.05

0.79

0.77

0.77

0.53

0.57

0.54

VGGish-LR

66.31 ± 4.86

66.68

0.77

0.72

0.74

0.48

0.55

0.51

VGGish-MLP

68.36 ± 3.76

68.11

0.76

0.78

0.77

0.51

0.49

0.50

VGGish-EC

71.54 ± 4.13

71.83

0.80

0.76

0.78

0.56

0.62

0.58

wav2vec-SVM [45]

73.80 ± 5.03

-

0.84

0.77

0.80

0.60

0.71

0.65

MFCC-glottal-SVM [45]

66.13 ± 3.11

-

0.80

0.66

0.72

0.49

0.66

0.56

MFCC-SVM [45]

68.15 ± 4.59

-

0.81

0.68

0.74

0.51

0.68

0.58

HuBERT-SVM [45]

74.50 ± 4.38

-

0.85

0.76

0.81

0.60

0.72

0.65

  1. In the metric names, ‘0’ corresponds to the healthy class, and ‘1’ represents the disordered. PR, RE and F1 represent Precision, Recall and F1 score respectively. The mean values over folds are presented for all matrices. The highest accuracy is indicated in bold. Additionally, standard deviations for accuracy are provided