From: A machine learning–based framework for predicting postpartum chronic pain: a retrospective study
CE | F1 score | AUC | PRAUC | Precision | Recall | Sensitivity | Specificity | |
---|---|---|---|---|---|---|---|---|
KNN | 0.212 | 0.789 | 0.862 | 0.817 | 0.751 | 0.830 | 0.830 | 0.751 |
Logistic | 0.342 | 0.628 | 0.719 | 0.676 | 0.652 | 0.606 | 0.606 | 0.706 |
LDA | 0.343 | 0.627 | 0.720 | 0.675 | 0.648 | 0.607 | 0.607 | 0.702 |
Naive bayes | 0.346 | 0.629 | 0.711 | 0.660 | 0.642 | 0.616 | 0.616 | 0.689 |
Ranger | 0.219 | 0.775 | 0.856 | 0.834 | 0.757 | 0.794 | 0.794 | 0.771 |
xgboost | 0.147 | 0.851 | 0.876 | 0.821 | 0.822 | 0.882 | 0.882 | 0.827 |