You are viewing the site in preview mode

Skip to main content

Table 8 Summary estimates for sensitivity and specificity of mortality studies

From: A meta-analysis of the diagnostic test accuracy of artificial intelligence predicting emergency department dispositions

Characteristic

Covariate

Metric

n

Estimate

95%

C.I.

p value

Data

Public dataset

Sens

2

0.90

0.64

0.98

0.446

Public dataset

Specs

2

0.95

0.70

0.99

0.799

Private dataset

Sens

31

0.85

0.80

0.88

[Reference]

Private dataset

Specs

31

0.94

0.90

0.96

[Reference]

Combined

Sens

4

0.82

0.66

0.91

0.591

Combined

Specs

4

0.85

0.74

0.92

0.189

Structured

Sens

29

0.86

0.80

0.90

[Reference]

Structured

Specs

29

0.95

0.91

0.97

[Reference]

Sample

Adults

Sens

24

0.85

0.79

0.89

0.853

Adults

Specs

24

0.94

0.89

0.97

0.759

Youths

Sens

2

0.99

0.00

1.00

0.663

Youths

Specs

2

0.89

0.83

0.92

0.458

Elders

Sens

2

0.88

0.77

0.94

0.689

Elders

Specs

2

0.90

0.77

0.96

0.540

Mixed

Sens

5

0.84

0.67

0.93

[Reference]

Mixed

Specs

5

0.96

0.82

0.99

[Reference]

Artificial intelligence technique

Machine learning

Sens

25

0.86

0.80

0.90

0.709

Machine learning

Specs

25

0.95

0.90

0.97

0.442

Deep learning

Sens

8

0.83

0.74

0.90

[Reference]

Deep learning

Specs

8

0.91

0.84

0.96

[Reference]

Random forest

Sens

4

0.91

0.56

0.99

0.516

Random forest

Specs

4

1.00

0.04

1.00

0.476

eXtreme Gradient boosting

Sens

3

0.73

0.61

0.82

0.562

eXtreme Gradient boosting

Specs

3

0.95

0.77

0.99

0.839

LightGBM

Sens

3

0.91

0.78

0.96

0.205

LightGBM

Specs

3

0.92

0.75

0.98

0.748

Logistic regression

Sens

2

0.80

0.73

0.86

0.938

Logistic regression

Specs

2

0.95

0.68

0.99

0.866

Deep neural network

Sens

5

0.86

0.76

0.92

0.418

Deep neural network

Specs

5

0.89

0.83

0.93

0.436

Convolutional neural network

Sens

3

0.79

0.63

0.89

[Reference]

Convolutional neural network

Specs

3

0.94

0.74

0.99

[Reference]

Ensemble

Sens

21

0.88

0.82

0.92

0.095

Ensemble

Specs

21

0.95

0.89

0.98

0.620

No ensemble

Sens

12

0.79

0.71

0.86

[Reference]

No ensemble

Specs

12

0.93

0.87

0.96

[Reference]

Cross validation

Sens

21

0.85

0.78

0.90

0.926

Cross validation

Specs

21

0.96

0.92

0.98

0.032

No cross validation

Sens

12

0.85

0.78

0.90

[Reference]

No cross validation

Specs

12

0.87

0.81

0.91

[Reference]

  1. Note: C.I. = Confidence Interval, Sens = Sensitivity, and Specs = Specificity