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Abstract

Background: As of today, cancer is still one of the most prevalent and high-mortality diseases, summing more than
9 million deaths in 2018. This has motivated researchers to study the application of machine learning-based solutions
for cancer detection to accelerate its diagnosis and help its prevention. Among several approaches, one is to
automatically classify tumor samples through their gene expression analysis.

Methods: In this work, we aim to distinguish five different types of cancer through RNA-Seq datasets: thyroid, skin,
stomach, breast, and lung. To do so, we have adopted a previously described methodology, with which we compare
the performance of 3 different autoencoders (AEs) used as a deep neural network weight initialization technique. Our
experiments consist in assessing two different approaches when training the classification model — fixing the
weights after pre-training the AEs, or allowing fine-tuning of the entire network — and two different strategies for
embedding the AEs into the classification network, namely by only importing the encoding layers, or by inserting the
complete AE. We then study how varying the number of layers in the first strategy, the AEs latent vector dimension,
and the imputation technique in the data preprocessing step impacts the network’s overall classification performance.
Finally, with the goal of assessing how well does this pipeline generalize, we apply the same methodology to two
additional datasets that include features extracted from images of malaria thin blood smears, and breast masses cell
nuclei. We also discard the possibility of overfitting by using held-out test sets in the images datasets.

Results: The methodology attained good overall results for both RNA-Seq and image extracted data. We
outperformed the established baseline for all the considered datasets, achieving an average F1 score of 99.03, 89.95,
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and 98.84 and an MCC of 0.99, 0.84, and 0.98, for the RNA-Seq (when detecting thyroid cancer), the Malaria, and the
Wisconsin Breast Cancer data, respectively.

Conclusions: We observed that the approach of fine-tuning the weights of the top layers imported from the AE
reached higher results, for all the presented experiences, and all the considered datasets. We outperformed all the
previous reported results when comparing to the established baselines.

Keywords: Cancer, Classification, Deep learning, Autoencoders, Gene expression analysis

Background
Cancer is a label for a group of diseases that is charac-
terized by abnormal and continuous cell growth, with the
potential to spread through its surrounding tissues and
other body parts [1]. During 2018, cancer was the second
leading cause of death globally, accountable for 9.6 million
deaths, where around 70% were in developing countries
[2]. Throughout the years, and given the evolution of tech-
niques, technology, and treatments in medicine, cancer
survival rates have been improving [3]. However, there are
still some types that have survival rates of under 20%, such
as pancreatic, esophagus, and liver cancers. Its prevalence
makes it more crucial to correctly and accurately clas-
sify such diseases. For tackling this need, many research
groups have been trying to help on accelerating cancer
diagnosis, by experimenting and studying the application
of machine learning algorithms to this problem [4].

When automatically classifying tumor samples, one
approach is to analyze the samples derived molecular
information, which is its gene expression signatures. Gene
expression is the phenotypic manifestation of a gene or
genes by the processes of genetic transcription and trans-
lation [5]. By studying it, this gene map can help to better
understand cancer’s molecular basis, which can have a
direct influence on this disease’s life cycle: prognosis, diag-
nosis, and treatment. There are two main cancer genomics
projects — The Cancer Genome Atlas (TCGA) [6] and
The International Cancer Genome Consortium (ICGC)
[7] — that aim to translate gene expression, systematiz-
ing thousands of samples across different types of cancers.
With this elevated number of features, each represent-
ing a particular gene, one may find genome-wide gene
expression assays datasets in these projects. However, this
type of data presents some challenges, because of (1) a
low number of samples, (2) an unbalanced class distri-
bution, with few examples of healthy samples, and (3)
a high potential of underlying noise and errors, due to
eventual technical and biological covariates [8]. This dif-
ficulty in gathering data accurately is underlying for every
dataset creation. The equipment used to collect the data
has intrinsic errors associated (mechanical, of acquisition,
and others), hence, the dataset will reflect these errors.

Several authors have chosen the previously mentioned
approach of analyzing the gene expression of tumor sam-
ples. Many of the developed methodologies in this scope
use straightforward supervised training, especially when
using deep neural networks (DNNs), relying on their
depth to produce the best results. Gao et al. [9] proposed
DeepCC, a supervised deep cancer subtype classification
framework based on deep learning of functional spec-
tra quantifying activities of biological pathways, robust to
missing data. The authors conducted two studies, each
with a different cancer detection (colorectal and breast
cancer data). The authors claimed that the described
method achieved overall higher sensitivity, specificity, and
accuracy compared with other classical machine learning
methods widely used for this kind of task, namely random
forests, support vector machine (SVM), gradient boosting
machine, and multinomial logistic regression algorithms,
with an accuracy higher than 90%.

Sun et al. [10] proposed Genome Deep Learning (GDL),
a methodology aiming to study the relationship between
genomic variations and traits based on DNNs. This
study analyzed over six thousand samples of Whole Exon
Sequencing (WES) mutations files from 12 different can-
cer types from TCGA, and nearly two thousand healthy
WES samples from the one thousand genomes projects.
The main goal of GDL was to distinguish cancerous from
healthy samples. The authors built: 12 models to iden-
tify each type of cancer separately, a total-specific model
able to detect healthy and cancerous samples, and a mixed
model to distinguish between all 12 types of cancer-based
on GDL. All the experiments were evaluated through:
(a) three performance metrics — accuracy, sensitivity,
and specificity — and (b) Receiver Operating Character-
istic curves, with the respective Area Under the Curve
(ROC-AUC). This methodology achieved a mean accu-
racy of 97.47% on the specific models, 70.08% on mixture
models, and 94.70% on total specific models, for cancer
identification.

In [11], Kim et al. compared the performances of: (1)
a neural network, (2) a linear SVM, (3) a radial basis
function-kernel SVM, (4) a k-nearest neighbors, and (5) a
random forest when identifying 21 types of cancers and
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healthy tissues. The classifiers were trained with RNA-
seq and scRNA-seq data from TCGA, where they selected
up to the 300 most significant genes expressed for each
of the cancer variations. To determine the optimal num-
ber of genes for each classifier’s binary classification task,
the methods mentioned above were trained with 12 dif-
ferent sizes of gene expression datasets (from 5 to 300
genes). When learning with 300 genes, the neural net-
work, the linear SVM, and the radial basis function-kernel
SVM models achieved their best performance, with a with
a Matthews Correlation Coefficient (MCC) of 0.92, 0.80,
and 0.83, respectively. The k-nearest neighbors and ran-
dom forest models achieved an MCC of 0.8 and 0.83,
accordingly, when using 200 genes. Furthermore, the
authors identified 10 classes with an accuracy of over 90%,
and achieved a mean MCC of 0.88 and a mean accuracy of
0.88, with the neural network classifier.

However, many DNNs, besides the known open chal-
lenges regarding their training setting [12], have a higher
tendency to overfit, which one can detect when apply-
ing the same architecture to unseen data (or to a held-out
test). Thus, our motivation focuses on exploring unsuper-
vised pre-training methods based on a lower-dimensional
latent representation with the usage of an autoencoder
(AE). This approach is grounded in the hypothesis that
(a) there is unessential information in high dimensional-
ity datasets, and (b) the acquisition and processing errors
potentially present in the dataset are discarded, contribut-
ing to a lower probability of overfitting [13]. Furthermore,
pre-training AEs and using the learned weights as priors
of the supervised classification task not just improves the
model initialization, but also often leads to better gener-
alization and performance [13]. This may be one of the
reasons why AEs are found to be the most predominant
strategy when analyzing RNA-Seq data [14].

To support our motivation and choices, we present
some works that include unsupervised training in their
methodologies. In [15], the authors designed a solu-
tion by combining a Multilayer Perceptron and Stacked
Denoising Autoencoder (MLP-SAE), aiming to predict
how good genetic variants can be a factor in gene expres-
sion changes. This model is composed of 4 layers (input,
two hidden layers from the AEs, and output, and trained it
to minimize the chosen loss function, the Mean Squared
Error (MSE). The authors started by training the AEs with
a stochastic gradient descent algorithm to later use them
on the multilayer perceptron training phase as weight ini-
tialization; cross-validation was used to select the best
model. The performance of the chosen model was com-
pared with the Lasso and Random Forest methods and
evaluated on predicting gene expression values for a dif-
ferent dataset. The authors concluded that their approach
(1) outperformed both the Lasso and Random Forest algo-
rithms (with an MSE of 0.2890 versus 0.2912 and 0.2967,

respectively), and (2) was able to capture the change in
gene expression quantification.

The authors in [16] described a study of four differ-
ent methods of unsupervised feature learning — Principal
Component Analysis (PCA), Kernel Principal Compo-
nent Analysis (KPCA), Denoising AE (DAE), and Stacked
Denoising AE — combined with distinct sampling meth-
ods when tackling a classification task. The authors
focused on assessing how influential the input nodes are
on the reconstructed data of the AE’s output, when feed-
ing these combinations to a shallow artificial network
trained to distinguish papillary thyroid carcinoma from
healthy samples. The authors highlighted two different
results, in their 5-fold cross validation experiment: the
combination of a SMOTE [17] with Tomek links and a
KPCA, was the one with the best overall performance,
with a mean F1 score of 98.12, while the usage of a DAE
achieved a mean F1 score of 94.83.

In [18] presented a stacked sparse autoencoder (SSAE)
semi-supervised deep learning pipeline, applied to can-
cer detection using RNA-Seq data. By employing layer-
wise pre-training and a sparsity penalty, this approach
helps to capture more significant information from the
known high dimensionality of RNA-Seq datasets, using
the filtered information to the sequent classification task.
The SSAE model was tested on three different TCGA
RNA-Seq datasets — corresponding to lung, stomach, and
breast cancers) — with healthy and cancerous samples,
and compared it to four others classification methods:
an SVM, a Random Forest, a neural network (supervised
learning only), and a vanilla AE. The authors performed
5-fold cross validation and evaluated the model’s perfor-
mance through four metrics: accuracy, precision, recall,
and F1 score. The results show that the semi-supervised
deep learning approach achieved superior performance
over the other considered methods, with an average F1
score of 98.97% across the three used datasets.

The authors in [19] developed a methodology for detect-
ing papillary thyroid carcinoma. They analyzed how the
usage of AEs as a weight initialization method affected
the performance of a DNN. Six types of AEs were con-
sidered: Basic AE, Denoising AE, Sparse AE, Denoising
Sparse AE, Deep AE, and Deep Sparse Denoising AE.
Before being integrated into the classifier architecture, all
AEs were trained to minimize the reconstruction error.
Subsequently, they were used to initialize the weights of
the first layers of classification neural network (meaning
that the AE layers become the top layers of the whole
classification architecture), using two different strategies
when importing the weights: (1) just the encoding layers,
and (2) all the pre-trained AE. Moreover, in the train-
ing phase, the authors studied two different approaches
when building the classifier: (a) fixing the weights of
the AE and (b) allowing subsequent fine-tuning of all
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the network’s weights. The authors used stratified 5-fold
cross-validation and evaluated the model through 6 dis-
tinct metrics: Loss, Accuracy, Precision, Recall, and F1
score. The authors reported that the overall best result
was achieved through a combination of Denoising AE,
followed by its complete import into the classification net-
work, and by allowing subsequent fine-tuning through
supervised training, yielding an F1 score of 99.61.

In [20], the authors present a transfer learning method-
ology, in which the main goal is to explore whether
leveraging the information extracted from a large RNA-
Seq data repository, with multiple cancer types, leads
to extract important latent features that can help com-
plex and specific prediction tasks, such as identifying
breast cancer neoplasia. The authors used the TCGA
PanCancer dataset, which is composed of approximately
11,000 RNA-Seq gene expression examples of 33 distinct
tumor types. This data was split into two sets: breast can-
cer and non-breast cancer data. The non-breast data is
firstly used to train the three selected architectures for
this study: a sparse AE, a deep sparse AE, and a deep
sparse denoising AE models. Then, the breast data is
used to fine-tune the resulting AEs. After pre-training
these models, the authors aim to predict the breast tumor
intrinsic-subtypes, which is given by the PAM50 sub-
type information included in the clinical data included in
the PanCancer data. The extracted features from the AE-
based architectures are then fed as input to three different
machine learning classifiers, namely Logistic Regression,
Support Vector Machine, and a shallow Neural Network.
To assess the deep AEs performance as feature extraction
methods, the authors compared them to other classi-
cal feature extraction methods, combining them with the
classification algorithms previously mentioned: ANOVA,
Mutual Information, Chi-Squared, and PCA. A 10-fold
cross validation was performed, and all the combinations
were compared through the accuracy metric. The results
showed the deep sparse denoising AE performs best when
using the AE extracted features, where the combination
with a shallow neural network leads to the best overall of
90.26% (±2.85).

In [21], Ferreira et al. used the same methodology
described in [19] to discriminate different types of cancer,
instead of distinguishing cancerous samples from healthy
ones. In this case, they aimed to identify thyroid, skin, and
stomach cancer correctly. Given that a Denoising AE was
the AE that lead to the best results in previous studies,
the authors chose to single it out, instead of the original 6.
The rest of the experiments remained the same: 2 strate-
gies for importing the pre-trained AE into the top layers
of the classifier, two approaches when training the classi-
fier to detect different types of cancer, same evaluation of
the obtained results. Although in a different domain, the
best outcome was reached with a combination of the same

strategy and the same approach in the previous work [19],
with an F1 score of 98.04, when identifying thyroid cancer.

Methods
We extend the previously described work in [21] by
assembling three different types of experiments, divided
into two main parts, where we use three different AEs
and five types of cancer samples. In the first one, we ana-
lyze the performance of a deep neural network (DNN),
using the same pipeline to identify different types of can-
cer. In the second part, we choose one of the used AEs
to assess how: (1) the variance of its latent vector dimen-
sion impacts the essential information capture and there-
fore possibly influencing the classifier’s performance, and
(2) different data imputation strategies can influence the
overall performance in the classification task. Moreover,
we study if the network architecture is correlated with
its overall performance, and how the model reacts when
training with a different data type dataset. We built this
pipeline in Python, using: the Numpy [22] and Pandas [23]
packages for the data preprocessing step; the Keras deep
learning library [24] running on top of TensorFlow and
the Scikit-Learn [25] package to train and evaluate the
models; and the Matplotlib [26] library for visualization.
Additionally, we used an NVIDIA GeForce RTX 2080 Ti
GPU, on a Ubuntu 18.04 operating system.

This section is organized as follows: “The data” subsec-
tion describes the used data and its inherent preprocess-
ing. “Autoencoders” subsection overviews the AEs con-
sidered to this study. “Methodology” subsection outlines
the pipeline, for each of the referred experiments. “Eval-
uation” subsection details how we evaluate the results to
provide statistical evidence. Finally, “Baseline” subsection
presents the established baseline results for all the used
datasets.

The data
In our experiments, we use two different types of data,
which are described in the subsections that follow.

RNA-Seq data
We used five different RNA-Seq datasets, from The Can-
cer Genomes Atlas (TCGA) [6], each representing a type

Table 1 Five instances of the thyroid RNA-Seq dataset we have used

UBE2Q2P2 HMGB1P1 LOC155060 ... ZZZ3 TPTEP1 AKR1C6P

0 -1.6687 NA NA ... -0.9478 -1.3739 NA

1 -1.1437 NA NA ... -0.4673 -0.0166 NA

2 -0.9194 NA NA ... 2.1918 -1.5856 NA

3 1.1382 NA NA ... 1.5512 -1.5897 NA

4 -0.3333 NA NA ... 0.4926 -1.3379 NA

The first line (the header) contains the genes names, and the column values
represent its expression, sample-wise (except for the first column, which is the
sample ID). NA stands for missing value, for a particular gene and sample
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of cancer: thyroid, skin, stomach, breast, and lung. One
can find a sample of the described data in Table 1.
The datasets were downloaded from the cBioPortal [27],
which gathers cancer-related data from different projects,
including TCGA. To train DNNs, we need as many data as
we can get. Ergo, our first criterion was to choose cancer
types that had the highest number of examples. Addi-
tionally, we decided to gice priority to cancer types with
high mortality and high incidence rates. We use the same
thyroid, skin, and stomach datasets presented in [21],
alongside the lung and breast datasets. The data filtering
process in the cBioPortal comprised searching with the
keywords PanCancer, sorting the obtained results from
highest to lowest RNA-Seq examples, and finally selecting
the thyroid, skin, stomach, breast, and lung datasets.

All five datasets are composed of approximately 20
thousand features. Each column feature in these datasets
represents a specific gene, and the cell values for each col-
umn are the expression of that gene in a particular sample.
All the RNA-Seq data were normalized according to the
distribution based on all samples. The expression distri-
bution of a gene is estimated by calculating the mean and
variance of all samples with expression values, and dis-
carding zero’s and non-numeric values such as NA, Null
or NaN, which are substituted by NA [28]. With the five
datasets, we gathered 509 examples of thyroid cancer, 472
of skin cancer, 415 of stomach cancer, 1,083 of breast can-
cer, and 511 of lung cancer. We would like to emphasize
that this dataset is only a toy dataset since the data does
not fairly reflect the immense difficulty associated with
identifying cancer in a real scenario.

The preprocessing pipeline was executed for each RNA-
Seq dataset separately. Firstly, we removed the columns
that had only one value throughout all samples. When
a value is constant for all the examples, there is no
entropic value; with no value variation, one cannot infer
any information. In total, 2,056, 2,072, 1,993, 457, and
591 columns were removed on the thyroid, skin, stom-
ach, breast, and lung datasets, respectively. By default, we
attributed the remaining missing values (represented by
NA in the dataset, as observable in Table 1) with the mean
value of the column where the missing value is [29]. Fur-
ther normalization was not applied in the data. Finally, we
added the Label column, to link the instances to their type
of cancer, when training the classifier.

Since we aim to distinguish several cancer variations, we
test all cancers against each other, assigning the positive
value one to the class of interest, and zero to the remaining
ones. When detecting thyroid cancer, all thyroid examples
are labeled as one and the skin, stomach, breast, and lung
instances as zero, and henceforward.

After processing all the datasets, it is improbable that
the preprocessing phase removed the same columns in all
of them. To guarantee the same features describe all the

samples, we intersect all the datasets and use the result
as our final dataset. Also, given that the breast cancer
datasets had almost the double of instances, we apply
downsampling and randomly select 500 breast cancer
examples, to keep the final dataset as evenly distributed
for all the cancers as possible. In the end, the resulting
dataset has approximately 3,000 instances and more than
17 thousand genes.

Data of features extracted from images
We use two datasets of two different diseases, composed
of features extracted from images: malaria and breast can-
cer. Since we aim to evaluate how well this methodology
generalizes, by using distinct types of data, we are now
able to gather evidence supporting this premise.

The malaria dataset was created by the Fraunhofer
AICOS institution, through the MalariaScope project
[30]. Their main goal is to develop low-cost solutions that
can provide fast, reliable, and accurate results on detect-
ing such disease, particularly in developing countries. In
[31], the authors thoroughly describe the feature extrac-
tion process, from thin blood smear images exclusively
acquired with smartphones. The resulting dataset is com-
posed of 26,839 samples and 1,058 features. These features
were normalized between [ −1, 1] via scaling and grouped
into three main groups: geometry, color, and texture.
From all the examples, approximately 8% contain malaria
parasites. Due to the high unbalance between Malaria
and Non-Malaria labels, we performed downsampling on
the Non-Malaria class, where we randomly selected 60%
examples. We decided to choose 60% instead of 50% due
to a wide variety of non-parasite artifacts. Once the sam-
ples were selected, and similarly to the preprocessing step
of the RNA-Seq data, we verify if there are features with
constant values and remove them if that is the case. Our
working malaria dataset has 5,906 instances (60% negative
and 40% positive) and 1,052 feature columns.

The Wisconsin Breast Cancer dataset [32] from the UCI
Machine Learning Repository is composed of 569 exam-
ples and 30 features. These features are computed from a
fine needle aspirate digitized image of a breast mass and
describe the cell nuclei characteristics present in those
images, such as texture, area, concavity, and symmetry.
From the 569 examples, approximately 60% are benign
samples, and 40% are malign ones. No under or oversam-
pling techniques were applied, since we do not find it to be
needed. As performed in the malaria data, we checked if
there were columns with constant values, for which there
were not. The data was used as is, with the proportions
and characteristics described above.

Autoencoders
An autoencoder (AE) [33] is an unsupervised feature
learning neural network, that aims to copy its input based
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on a lower dimensional representation. This type of archi-
tecture is able to extract features by reducing the dimen-
sion of its hidden layer [33], which helps the AE to focus
on capturing the essential features that best represent the
data.

Let the encoding and decoding functions of the AE be f
and g, parameterized on θe and θd respectively, where θ =
θe ∪θd, L being the loss function, and J the cost function to
be minimized. When learning, the AE aims to find value θ

that:

argmin
θ

J(θ ; X) = L(X, gθd (fθe(X)) (1)

penalizing the reconstruction of the input, given by X̂ =
gθd (fθe(X)); the more distinct X̂ is, the bigger the applied
penalty. When training an AE, we use Mean Squared Error
(MSE) as the loss function, and the Rectified Linear Units
activation function (ReLU) [34] for all its layers. Currently,
using ReLU as activation is the default recommendation,
when training neural networks [35]. Similarly, using MSE
as the loss function is a fairly common practice present in
the literature, when training AEs [15, 35–37].

We use the AEs as a weight initialization technique
[38] since evidence supports that using “unsupervised pre-
training guides the learning towards basins of attraction
of minima that support better generalization from the
training dataset” [13]. Thus, we pre-trained them before
importing the encoding part or all their layers to the
classification neural network.

Basic autoencoder (AE)
The simplest AE has only one hidden layer. This type of
AE learns through the optimization cost function pre-
sented in Eq. 1. With the combination of linear activations
(ReLU) and the MSE loss function, these AEs behave sim-
ilarly to the Principle Component Analysis (PCA) method
— when trained with an MSE, an AE learns the principal
subspace of the training data, consequentially [35].

Denoising autoencoder (DAE)
A Denoising AE (DAE) [39] aims not just to reproduce the
input, but also to keep its information intact to undo the
effect of an intentional corruption process applied to the
original data. Its cost function can be described by:

Fig. 1 Overall pipeline of our experiments. This figure illustrates the chosen metodology for our work. Firstly, we pre-train the autoencoders (AEs),
before embedding them to the top layers of the classification network, fullfilling either Strategy 1 (import only the encoding layers from the AE) or
Strategy 2 (import the complete AE). Each of the full assembled architectures is then trained to detect one of the 5 cancer types, in the input data.
The training process can follow two different approaches, regarding the imported weights of the AEs: (A) fixing them or (B) allowing subsequent
fine-tune. I represents the input layer, E the encoding layer, Î the output layer of the AE; at the classification region of the network, D represents the
fully connected layer, and O the output of the classifer
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argmin
θ

J(θ ; X) = L(X, gθd (fθe(X̃)) (2)

where X̃ is a copy of the input X, intentionally corrupted
by a sort of noise [35]. To simulate a form of Bernoulli
Noise [40], we apply a Dropout layer, immediately after the
input layer, where 10 of the connections are randomly cut.

Sparse autoencoder
Similarly to a DAE, a Sparse AE (SAE) learning process
also has two main goals: (1) minimizing the reconstruc-
tion error when aiming to copy the input data, and (2)
applying a sparsity penatly (represented by � to the
parameters involved in the encoding part:

argmin
θ

J(θ , X) = L(X, gθd (fθe(X + λ · �(θe))) (3)

Although it also tries to reproduce X, an SAE can
address unique statistical features of the dataset it has
been trained on [35, 41]. To deliver that sparsity element,
we use an L1 penalty, with a λ of 10−5.

Methodology
We have adopted the methodology described in [19],
which was also used in [21]. Our experiments consist of
an analysis of the performance of a DNN, trained to clas-
sify different cancer types, studying how three different
factors may impact the network performance:

1. The top layers, where we use three different AEs as
weight initialization;

2. The dimension of the latent vector of the AEs, that
means the encoding layer size;

3. The imputation technique, to replace missing data
when preprocessing the datasets.

For all these, we follow the same pipeline (see Fig. 1). For
each experience, we start by pre-training a different AE to
minimize the reconstruction error, before importing them
into the top of the classification architecture. When doing
so, we choose one of the two strategies considered for this
study: (1) add just the encoding layers, or (2) add all the
pre-trained AE. After the embedding of the AE to the top
layers, we consider two different approaches in the train-
ing process: (A) fixing the imported weights of the AE
layers, and (B) by allowing them to be fine-tuned, during
the model training for the classification task.

With the complete architectures (AE as the top part of
the classification network) assembled, we train each one
to distinguish:

• The RNA-Seq input data as one of 5 cancers, namely
thyroid, skin, stomach, breast, and lung;

• The malaria input data as Malaria or Non-Malaria;
• The breast masses input data as Malign or Benign.

Besides the top layers imported from the AE, the clas-
sification part of the full architecture is composed of a
Batch Normalization layer [42], followed by two Fully
Connected layers with a ReLU [34] activation. Since we
aim to detect one type of cancer at the time, the last layer
— the predictive one — is a single neuron layer with a
Sigmoid non-linearity [43]. This activation considers that
if the probability of the classification is lower than 0.5,
the sample is classified as negative (that is not having the
disease); otherwise, the sample is classified as positive.

To assess the following experiments, we decided to only
use the AE that achieved the best results in the first
experiments. For points (2) and (3), we try three differ-
ent dimensions: 64, 32, and 16. For the data imputation
study, we use three strategies: replacing the data with
(a) the mean column value (used as default), a constant
value (in this case, zero), and (b) with the most frequent
value.

Furthermore, we want to study if when using Strategy
2 (importing the complete AE into the classification net-
work) the model yields better results just because it has
one more layer and, therefore, more parameters to train.
To observe if the classifier is better only by being deeper,
we pre-trained the AE and, at the embedding step for
Strategy 1, we add a decoder layer, with all its weights
randomized, guaranteeing that there are no discrepancies
concerning the network’s topological complexity, for both
strategies.

Finally, we want to assess how the pipeline behaves
when dealing with different data types, besides RNA-
seq entries. Hence, we apply the same methodology
to the image extracted features datasets described in
“The data” section, to assess if the model can adapt and
generalize well to these data characteristics.

Evaluation
We use stratified 10-fold cross-validation, to ensure and
provide statistical evidence. The AEs are trained during
300 epochs, and the classifier during 500 with a batch
size of 100. The classification model is trained with the
binary cross-entropy loss function [35] and with an Adam
optimizer [44]. Furthermore, we assess the overall perfor-
mance of the model in the training and validation sets,
by analyzing five more metrics: Accuracy, Matthews Cor-
relation Coefficient (MCC) [45], Precision, Recall, and F1
score, and provide the Receiving Operator Curve, with the
respective Area Under the Curve (ROC-AUC), and the
Precision-Recall Curve.

Furthermore, to study how the model generalizes to
unseen data during the training phase, we evaluate the
performance of the best architecture combination on a
held-out test set, for the Malaria and the Wisconsin Breast
Cancer datasets. For both, and separately, we use a ratio of
one third to create two new splits. Therefore:
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Table 2 Baseline results for cancer detection, using a Fully Connected Neural Network (the classification architecture, without the AE
as top layers)

Accuracy (%) MCC Precision (%) Recall (%) F1 score

Thyroid 80.00 ±10.92 0.23 ±0.13 55.42 ±32.18 26.07 ±27.31 26.04 ±16.31

Skin 84.67 ±4.95 0.46 ±0.12 62.08 ±20.86 54.15 ±20.82 51.15 ±14.76

Stomach 81.33 ±11.47 0.27 ±0.18 56.66 ±32.34 33.85 ±27.06 30.94 ±17.66

Breast 85.60 ±2.07 0.34 ±0.16 80.95 ±21.33 25.60 ±17.51 33.99 ±19.01

Lung 77.13 ±12.59 0.21 ±0.18 39.90 ±37.04 33.73 ±35.76 25.25 ±22.47

All the presented results are the 10-fold cross-validation mean values, at the validation set, by selecting the best performing model according to its F1 score

• The Malaria train and test sets are composed of 3957
and 1949 examples, respectively;

• The Wisconsin Breast Cancer train and test sets are
composed of 381 and 188 examples, respectively.

We performed a stratified split, meaning that we pre-
serve the distribution of the label in both the train and
test sets. With the training set, we followed the same
stratified cross-validation strategy described above. The
performance on the held-out set was assessed through the
same metrics as well.

Baseline
To support our claim that using AEs as weight initial-
ization improves a DNN performance, we defined three
different baselines, for each of the used datasets.

For the RNA-Seq data, we established as baseline the
results from the classification part of our methodology,
without the top layers of the AEs. The baseline model was
trained under the circumstances described in the previous
section. The results of such experiment can be found in
Table 2, where the best overall performance was achieved
when classifying skin cancer, with a mean F1 score of 51.15%.

We further added another baseline for the RNA-Seq
datasets, where we use a simple AE with random and fixed
weights, with the intent of discarding the possibility of

our pipeline yielding better only because its classification
architecture is slightly deeper. These baseline results are
presented in Table 3 and will be later assessed in this
paper, in the Results and discussion section.

For the malaria dataset, we consider two results of two
different approaches, applied to the same domain. Firstly,
in [31], the authors used a support vector machine (SVM)
to automatically classify each species-stage combination
of the malaria parasite. The authors studied the SVM
hyperparameters and their influence on the classifier’s
performance. When considering F1 score, this classifier
performance ranged from 18.8% to 87.4%, considering
all the malaria parasite species-stage combinations. Sec-
ondly, in [46] a 5-class MobileNet v2 convolutional neu-
ral network was used to directly classify the thin blood
smears images. The chosen architecture presented an F1
score of 53% when detecting parasites from artifacts.

For the Wisconsin Breast Cancer dataset, we chose as
baseline the work presented in [47], where the authors
studied different machine learning algorithms, combined
with a Principal Component Analysis (PCA) to detect
tumorous and non-tumorous samples on this dataset. Fur-
thermore, they compared their best top 3 models with
some state-of-the-art models. Their overall best was the
combination a Naïve Bayes with a Sigmoid PCA, with an
F1 score of approximately 97%.

Table 3 Baseline results for cancer detection, using a vanilla AE with random weights

Top Layers (AE) Accuracy (%) MCC Precision (%) Recall (%) Fscore (%)

Thyroid
AE: Encoding Layers 83.03 ±2.17 0.16 ±0.16 52.46 ±38.70 15.10 ±18.39 18.80 ±19.71

AE: Complete AE 93.07 ±1.52 0.76 ±0.04 81.12 ±9.41 79.58 ±8.46 79.57 ±3.87

Skin
AE: Encoding Layers 82.87 ±2.77 0.23 ±0.10 43.46 ±10.55 25.00 ±9.75 30.98 ±9.73

AE: Complete AE 87.47 ±4.28 0.54 ±0.06 64.80 ±12.79 59.79 ±9.38 60.55 ±5.11

Stomach
AE: Encoding Layers 84.63 ±2.41 0.19 ±0.06 42.11 ±9.80 17.33 ±7.71 22.90 ±7.37

AE: Complete AE 87.40 ±2.68 0.47 ±0.10 55.77 ±10.29 51.66 ±8.72 53.24 ±8.33

Breast
AE: Encoding Layers 82.13 ±4.16 0.22 ±0.10 53.51 ±20.92 20.60 ±12.96 25.94 ±13.06

AE: Complete AE 87.00 ±1.58 0.52 ±0.04 62.81 ±7.03 57.80 ±6.29 59.70 ±3.35

Lung
AE: Encoding Layers 81.60 ±1.26 0.15 ±0.07 40.78 ±11.11 14.88 ±8.74 20.45 ±9.95

AE: Complete AE 85.30 ±3.50 0.50 ±0.06 59.78 ±11.76 59.11 ±9.72 57.99 ±4.88

All the presented results are the 10-fold cross-validation mean values, at the validation set, by selecting the best performing model according to its F1 score
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Results and discussion
Autoencoders as weight initialization can efficiently
predict diseases when applied to different biological
and feature-extracted data. Given the results, one tends
to assume that the methodology originally presented in
[19] generalizes to different data and problems. This work
can be seen as another empirical proof supporting this
premise. We outperform the results of Ferreira et al.
[21] and the baseline results presented in Tables 2 and
3; our best performance was achieved by combining the
pre-trained AE encoding layers import to the upper lay-
ers (Strategy 1) of the deep classification network and
allowing subsequent fine-tuning (Approach B), with an
F1 score of 99.03 and an MCC of 0.99, when distin-
guishing thyroid from the other cancer types (and an
average F1 score of 98.27%, when considering all can-
cer classifications). The various networks combinations
also achieved very high results for each cancer type, as
observable in Table 4. Furthermore, our methodology
outperformed the established baselines for both image-
based features datasets. The best overall performances
were:

• The combination of the pre-trained DAE encoding
layers import to the upper layers (Strategy 1) of the
deep classification network and allowing subsequent
fine-tuning (Approach B), with an F1 score of 89.95%
and an MCC of 0.84, on the Malaria dataset (as
highlighted in Table 5);

• The combination of the pre-trained AE encoding
layers import to the upper layers (Strategy 1) of the
deep classification network and allowing subsequent
fine-tuning (Approach B), with an F1 score of 98.84%
and an MCC of 0.98, on the Wisconsin Breast Cancer
dataset, (as shown in Table 6).

With these results, there is evidence that this methodol-
ogy can generalize to other types of data and tasks.

Subsequent model fine-tuning (Approach B) leads to
better results than fixing the weights (Approach A).
Similarly to [19], it was clear that, with the new data, our
results for all the experiments in the three datasets sup-
port that allowing the imported weights of the AEs to be
fine-tuned in the training phase gave better results than
fixing them.

Table 4 Performance comparison when using each of the 3 AEs — Basic AE, Denoising AE and Sparse AE — and for each type of cancer

Top Layers (AEs) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Fixing the AE weights (Approach A)

Thyroid

AE: Encoding Layers 91.80 ±3.34 0.72 ±0.11 76.06 ±11.72 78.98 ±12.01 76.64 ±8.98

AE: Complete Autoencoder 94.90 ±1.56 0.82 ±0.06 84.13 ±5.00 86.43 ±6.63 85.32 ±4.57

DAE: Encoding Layers 87.63 ±3.49 0.57 ±0.09 67.41 ±12.33 63.48 ±18.10 63.49 ±9.42

DAE: Complete Autoencoder 94.03 ±1.06 0.79 ±0.04 81.79 ±4.60 84.37 ±4.87 83.11 ±2.73

SAE: Encoding Layers 87.93 ±2.66 0.57 ±0.14 65.43 ±7.70 64.25 ±22.35 62.41 ±14.32

SAE: Complete Autoencoder 92.67 ±1.96 0.75 ±0.06 77.13 ±8.76 82.51 ±4.57 79.42 ±4.72

Skin

AE: Encoding Layers 90.77 ±3.52 0.63 ±16.17 74.71 ±13.54 61.40 ±17.15 66.83 ±15.08

AE: Complete Autoencoder 92.40 ±2.65 0.69 ±0.12 80.92 ±9.21 67.35 ±13.36 73.12 ±11.00

DAE: Encoding Layers 85.07 ±4.16 0.42 ±0.16 56.22 ±16.42 47.02 ±18.01 48.76 ±14.72

DAE: Complete Autoencoder 89.43 ±1.32 0.58 ±0.06 69.42 ±5.65 60.15 ±8.18 63.98 ±5.04

SAE: Encoding Layers 79.27 ±3.70 0.07 ±5.71 33.49 ±25.49 13.79 ±7.76 16.11 ±8.02

SAE: Complete Autoencoder 85.83 ±2.04 0.45 ±0.07 56.34 ±7.81 49.57 ±6.24 52.42 ±5.64

Stomach

AE: Encoding Layers 91.60 ±1.91 0.62 ±0.09 76.09 ±9.45 58.07 ±10.87 65.35 ±8.96

AE: Complete Autoencoder 94.00 ±1.47 0.74 ±0.07 83.45 ±8.34 71.56 ±6.24 76.78 ±5.42

DAE: Encoding Layers 86.50 ±4.33 0.33 ±0.16 64.35 ±22.75 27.46 ±12.98 34.93 ±15.68

DAE: Complete Autoencoder 91.03 ±1.57 0.58 ±0.08 74.03 ±7.85 54.91 ±9.42 62.61 ±7.69

SAE: Encoding Layers 85.93 ±1.34 0.16 ±0.11 48.24 ±25.25 11.06 ±6.73 17.49 ±9.35

SAE: Complete Autoencoder 89.87 ±2.06 0.56 ±8.23 66.10 ±9.38 57.09 ±6.33 61.02 ±6.82

Breast

AE: Encoding Layers 88.40 ±5.52 0.59 ±0.17 68.39 ±19.13 64.80 ±10.84 65.91 ±13.72

AE: Complete Autoencoder 91.77 ±3.13 0.69 ±0.12 80.57 ±11.79 67.00 ±11.24 72.91 ±10.86

DAE: Encoding Layers 83.53 ±1.74 0.25 ±0.14 51.39 ±25.04 25.60 ±15.57 31.23 ±17.51

DAE: Complete Autoencoder 87.30 ±1.90 0.53 ±0.05 63.43 ±7.13 58.60 ±5.17 60.67 ±4.58

SAE: Encoding Layers 79.73 ±3.86 0.02 ±0.05 9.80 ±12.48 3.00 ±3.16 4.11 ±4.09

SAE: Complete Autoencoder 84.07 ±2.40 0.41 ±0.07 53.13 ±8.05 47.80 ±4.85 50.13 ±5.62
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Table 4 Performance comparison when using each of the 3 AEs — Basic AE, Denoising AE and Sparse AE — and for each type of
cancer (Continued)

Lung

AE: Encoding Layers 85.97 ±7.00 0.54 ±0.13 65.00 ±17.54 61.25 ±12.30 60.94 ±11.01

AE: Complete Autoencoder 90.93 ±2.56 0.67 ±0.09 77.28 ±9.43 66.90 ±8.26 71.51 ±7.94

DAE: Encoding Layers 81.77 ±3.17 0.25 ±0.13 45.70 ±25.30 28.38 ±16.21 32.15 ±15.21

DAE: Complete Autoencoder 85.73 ±3.28 0.49 ±0.09 60.30 ±9.76 53.40 ±7.49 56.21 ±7.44

SAE: Encoding Layers 79.70 ±3.66 0.11 ±0.08 23.94 ±30.04 4.88 ±3.81 7.13 ±5.27

SAE: Complete Autoencoder 83.23 ±2.59 0.40 ±0.09 51.33 ±7.62 49.33 ±10.08 49.83 ±7.52

Fine-Tuning the AE Weights (Approach B)

Thyroid

AE: Encoding Layers 99.67 ±0.42 0.99 ±0.01 98.29 ±2.09 99.80 ±0.62 99.03 ±1.21

AE: Complete Autoencoder 99.67 ±0.22 0.99 ±0.01 99.22 ±1.00 98.82 ±1.02 99.02 ±0.65

DAE: Encoding Layers 99.57 ±0.55 0.99 ±0.02 97.77 ±3.08 99.80 ±0.62 98.75 ±1.56

DAE: Complete Autoencoder 99.60 ±0.38 0.99 ±0.01 99.22 ±1.01 98.42 ±2.05 98.81 ±1.15

SAE: Encoding Layers 95.47 ±1.01 0.85 ±0.02 80.98 ±4.76 96.47 ±3.31 87.90 ±2.20

SAE: Complete Autoencoder 97.73 ±0.52 0.93 ±0.02 89.39 ±2.69 98.43 ±2.03 93.65 ±1.41

Skin

AE: Encoding Layers 99.50 ±0.32 0.98 ±0.01 98.12 ±1.52 98.73 ±1.48 98.45 ±1.01

AE: Complete Autoencoder 99.33 ±0.57 0.97 ±0.02 99.35 ±1.45 96.41 ±2.99 97.84 ±1.84

DAE: Encoding Layers 99.30 ±0.51 0.97 ±0.02 97.52 ±2.12 98.09 ±2.34 97.78 ±1.62

DAE: Complete Autoencoder 99.50 ±0.53 0.98 ±0.02 99.58 ±0.89 97.24 ±3.48 98.36 ±1.77

SAE: Encoding Layers 95.80 ±1.18 0.84 ±0.05 93.23 ±5.06 79.43 ±7.22 85.51 ±4.38

SAE: Complete Autoencoder 97.53 ±1.08 0.90 ±0.05 95.76 ±2.83 88.37 ±7.12 91.74 ±3.94

Stomach

AE: Encoding Layers 99.43 ±0.39 0.98 ±1.71 98.21 ±1.70 97.83 ±1.36 97.98 ±1.36

AE: Complete Autoencoder 99.17 ±0.59 0.97 ±0.02 97.60 ±1.98 96.39 ±4.24 96.93 ±2.26

DAE: Encoding Layers 99.33 ±0.47 0.97 ±0.02 97.84 ±2.10 97.35 ±2.39 97.57 ±1.72

DAE: Complete Autoencoder 99.23 ±0.57 0.97 ±0.02 98.08 ±1.90 96.35 ±3.86 97.16 ±2.16

SAE: Encoding Layers 95.60 ±0.81 0.81 ±0.04 93.33 ±3.92 73.72 ±7.08 82.12 ±3.96

SAE: Complete Autoencoder 97.37 ±0.55 0.89 ±2.89 96.08 ±3.01 84.56 ±4.90 89.83 ±2.43

Breast

AE: Encoding Layers 99.33 ±0.52 0.98 ±0.02 97.85 ±2.32 98.20 ±1.48 98.01 ±1.55

AE: Complete Autoencoder 99.30 ±0.37 0.98 ±0.01 99.00 ±1.06 96.80 ±2.35 97.87 ±1.15

DAE: Encoding Layers 99.20 ±0.65 0.97 ±0.02 97.83 ±2.54 97.40 ±1.90 97.60 ±1.95

DAE: Complete Autoencoder 99.23 ±0.52 0.97 ±0.02 98.60 ±2.08 96.80 ±1.69 97.68 ±1.57

SAE: Encoding Layers 96.70 ±1.24 0.89 ±0.05 95.29 ±4.78 84.60 ±6.47 89.45 ±4.14

SAE: Complete Autoencoder 97.40 ±1.12 0.90 ±0.04 95.78 ±4.02 88.40 ±4.79 91.87 ±3.52

Lung

AE: Encoding Layers 99.27 ±0.83 0.97 ±0.03 97.34 ±3.08 98.44 ±2.02 97.87 ±2.40

AE: Complete Autoencoder 99.23 ±0.45 0.97 ±0.02 98.83 ±1.63 96.67 ±2.46 97.71 ±1.34

DAE: Encoding Layers 99.00 ±0.75 0.96 ±0.03 96.89 ±2.27 97.26 ±2.65 97.06 ±2.23

DAE: Complete Autoencoder 99.27 ±0.52 0.97 ±0.02 97.95 ±2.69 97.85 ±3.12 97.87 ±1.58

SAE: Encoding Layers 95.27 ±1.43 0.82 ±0.06 90.69 ±4.64 80.61 ±6.72 85.21 ±4.78

SAE: Complete Autoencoder 97.00 ±0.96 0.89 ±0.04 93.65 ±2.56 88.44 ±5.36 90.88 ±3.19

When measuring loss, lower is better. For all the remaining metrics, higher is better. All the presented results are the 10-fold cross-validation mean values, at the validation
set, by selecting the best performing model according to its F1 score. The highlighted values correspond to the combination that led to the overall best result (detecting
thyroid cancer, importing only the encoding layers a Basic AE into the classification network, and allowing subsequent fine-tune, when training for the classification task)

There is high evidence supporting that importing
only the encoding part of the AE leads to good results.
According to the results in Table 7, and considering
Approach A, the Strategy 1 of embedding with extra
random decoding yielded better results in comparison to

Strategy 2, for all the combination except when using an
SAE. Regarding Approach B, all combinations achieved
quite close results for all the performed experiments.
Thus, one can argue that less complex models can achieve
better results, similar to what was concluded in [21].
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Table 5 Performance comparison when using each of the 3 AEs — Basic AE, Denoising AE and Sparse AE — and for malaria detection

Top Layers (AE) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Approach A

AE: Encoding Layers 62.82 ±0.60 0.03 ±0.04 66.17 ±41.60 1.90 ±3.97 3.32 ±6.49

AE: Complete Autoencoder 62.73 ±0.45 0.03 ±0.04 53.97 ±34.95 2.12 ±4.23 3.66 ±6.72

DAE: Encoding Layers 62.50 ±0.07 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

DAE: Complete Autoencoder 62.50 ±0.07 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

SAE: Encoding Layers 62.21 ±0.34 -0.01 ±0.02 13.17 ±17.36 0.23 ±0.32 0.44 ±0.63

SAE: Complete Autoencoder 62.51 ±0.07 0.21 ±0.65 10.00 ±31.62 0.05 ±0.14 0.09 ±0.28

Approach B

AE: Encoding Layers 91.28 ±1.17 0.82 ±0.02 87.41 ±2.69 89.84 ±3.32 88.53 ±1.58

AE: Complete Autoencoder 91.43 ±1.21 0.82 ±0.02 88.12 ±2.37 89.25 ±2.21 88.66 ±1.58

DAE: Encoding Layers 92.36 ±0.46 0.84 ±0.01 88.91 ±2.14 91.11 ±2.49 89.95 ±0.61

DAE: Complete Autoencoder 92.18 ±0.83 0.84 ±0.02 88.54 ±2.33 91.19 ±1.68 89.78 ±1.00

SAE: Encoding Layers 62.21 ±0.34 -0.01 ±0.02 13.17 ±17.36 0.23 ±0.32 0.44 ±0.63

SAE: Complete Autoencoder 62.51 ±0.07 0.01 ±0.01 10.00 ±31.62 0.05 ±0.14 0.09 ±0.28

All the presented results are the 10-fold cross-validation mean values, at the validation set, by selecting the best performing model according to its F1 score. The first row
presents the results for Approach A, where we fix the resulting weights of the AE pre-training; the second one shows the results for Approach B, where we allow the
subsequent fine-tuning of all the weights of the model. The highlighted values correspond to the combination that led to the overall best result (importing only the
encoding layers a Denoising AE into the classification network, and allowing subsequent fine-tune, when training for the classification task)

There is no evidence of overfitting, considering the
additional experiments with held-out test sets. Accord-
ing to the results in Table 8, which are representative of
the models’ evaluation on two distinct held-out test sets,
one can affirm that our models generalize well to new
data. The results in the test phase were similar to the
ones on the validation sets in the training phase (a differ-
ence of approximately 3% and 2% respectively, for both the
Malaria and the Wisconsin Breast Cancer data), meaning

also that the models do not seem to overfit the training
data.

Changing the AE latent vector dimension has
more impact when fixing the AE pre-trained weights
(Approach A) than when fine-tuning all the weights
(Approach B). When varying the latent vector dimen-
sion, the 3 tested dimensions achieved lower results
than the encoding layer size used as default when
analyzing Approach A (Fixed Weights). However, when

Table 6 Performance comparison when using each of the 3 AEs — Basic AE, Denoising AE and Sparse AE — and for breast cancer
detection, on the UCI’s Wisconsin Breast Cancer dataset

Top Layers (AEs) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Approach A

AE: Encoding Layers 97.54 ±2.06 0.95 ±0.04 98.67 ±2.92 94.81 ±5.20 96.60 ±2.90

AE: Complete Autoencoder 96.49 ±2.62 0.93 ±0.05 96.83 ±3.71 93.83 ±7.12 95.11 ±3.93

DAE: Encoding Layers 95.43 ±3.81 0.90 ±0.08 98.38 ±3.48 89.13 ±8.73 93.36 ±6.05

DAE: Complete Autoencoder 93.32 ±3.78 0.86 ±0.08 98.19 ±2.93 83.46 ±8.52 90.09 ±5.98

SAE: Encoding Layers 97.19 ±2.22 0.94 ±0.05 97.69 ±3.15 94.81 ±5.20 96.14 ±3.13

SAE: Complete Autoencoder 97.02 ±2.35 0.94 ±0.05 97.70 ±2.42 94.31 ±7.03 95.80 ±3.64

Approach B

AE: Encoding Layers 99.12 ±1.24 0.98 ±0.03 98.71 ±2.86 99.05 ±2.01 98.84 ±1.59

AE: Complete Autoencoder 98.60 ±1.38 0.97 ±0.03 97.75 ±2.38 98.57 ±3.21 98.11 ±1.91

DAE: Encoding Layers 97.72 ±2.62 0.95 ±0.06 98.08 ±2.50 95.74 ±6.13 96.81 ±3.83

DAE: Complete Autoencoder 97.19 ±2.64 0.94 ±0.06 96.39 ±4.57 96.23 ±4.91 96.22 ±3.62

SAE: Encoding Layers 97.19 ±2.22 0.94 ±0.04 96.15 ±5.24 96.71 ±3.19 96.31 ±2.78

SAE: Complete Autoencoder 96.66 ±2.10 0.93 ±0.04 97.66 ±3.28 93.44 ±5.47 95.39 ±2.96

All the presented results are the 10-fold cross-validation mean values, at the validation set, by selecting the best performing model according to its F1 score. The first row
presents the results for Approach A, where we fix the resulting weights of the AE pre-training; the second one shows the results for Approach B, where we allow the
subsequent fine-tuning of all the weights of the model. The highlighted values correspond to the combination that led to the overall best result (importing only the
encoding layers a Basic AE into the classification network, and allowing subsequent fine-tune, when training for the classification task.)
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Table 7 Performance comparison when adding a decoder layer with random weights when using Strategy 1 (importing only the
enconder part of AE), for each of the 3 AEs — Basic AE, Denoising AE and Sparse AE — for breast cancer detection, with RNA-Seq input

Top Layers (AEs) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Approach A

AE: Encoding Layer (n=2) 88.40 ±5.52 0.59 ±0.17 68.39 ±19.13 64.80 ±10.84 65.91 ±13.72

AE: Complete Autoencoder 91.77 ±3.13 0.69 ±0.12 80.57 ±11.79 67.00 ±11.24 72.91 ±10.86

AE: Encoding Layer (n=3) 92.53 ±2.25 0.72 ±0.09 80.75 ±7.45 72.31 ±11.29 76.50 ±8.12

DAE: Encoding Layer (n=2) 83.53 ±1.74 0.25 ±0.14 51.39 ±25.04 25.60 ±15.57 31.23 ±17.51

DAE: Complete Autoencoder 87.30 ±1.90 0.53 ±0.05 63.43 ±7.13 58.60 ±5.17 60.67 ±4.58

DAE: Encoding Layer (n=3) 87.47 ±2.81 0.57 ±0.08 62.88 ±10.52 68.00 ±8.99 64.51 ±6.24

SAE: Encoding Layer (n=2) 79.73 ±3.86 0.02 ±0.05 9.80 ±12.48 3.00 ±3.16 4.11 ±4.09

SAE: Complete Autoencoder 84.07 ±2.40 0.41 ±0.07 53.13 ±8.05 47.80 ±4.85 50.13 ±5.62

SAE: Encoding Layer (n=3) 76.33 ±8.91 0.36 ±0.11 41.26 ±12.14 62.20 ±12.80 47.83 ±8.30

Approach B

AE: Encoding Layer (n=2) 99.33 ±0.52 0.98 ±0.02 97.85 ±2.32 98.20 ±1.48 98.01 ±1.55

AE: Complete Autoencoder 99.30 ±0.37 0.98 ±0.01 99.00 ±1.06 96.80 ±2.35 97.87 ±1.15

AE: Encoding Layer (n=3) 99.17 ±0.53 0.97 ±0.02 98.43 ±1.98 96.60 ±3.27 97.46 ±1.65

DAE: Encoding Layer (n=2) 99.20 ±0.65 0.97 ±0.02 97.83 ±2.54 97.40 ±1.90 97.60 ±1.95

DAE: Complete Autoencoder 99.23 ±0.52 0.97 ±0.02 98.60 ±2.08 96.80 ±1.69 97.68 ±1.57

DAE: Encoding Layer (n=3) 99.33 ±0.38 0.98 ±0.01 99.20 ±1.40 96.80 ±1.69 98.02 ±1.08

SAE: Encoding Layer (n=2) 96.70 ±1.24 0.89 ±0.05 95.29 ±4.78 84.60 ±6.47 89.45 ±4.14

SAE: Complete Autoencoder 97.40 ±1.12 0.90 ±0.04 95.78 ±4.02 88.40 ±4.79 91.87 ±3.52

SAE: Encoding Layer (n=3) 97.27 ±0.64 0.90 ±0.02 93.58 ±1.91 89.80 ±3.71 91.61 ±2.09

The first row presents the results for Approach A, where we fix the resulting weights of the AE pre-training; the second one shows the results for Approach B, where we allow
the subsequent fine-tuning of all the weights of the model. All the presented results are the 10-fold cross-validation mean values, at the validation set, by selecting the best
performing model according to its F1 score. n represents the number of layers of the encoder

analyzing Approach B (Fine-Tuning Weights), the results
in Table 9 show no significant variation in the DNN per-
formance, for both the embedding AE strategies, with
a F1 score variation of 1% to 3%, comparing with the
default size experiment. In Approach A (Fixing Weights),
the performance difference was more significant, with
the F1 score decreasing nearly 20% with a latent vector
dimension of 64, and approximately 60% with a dimension
of 16, for Strategy 1.

There is no evidence supporting a conclusion on
which is the best data imputation strategy. After the
imputation strategy experiment, the results pointed out
that the mean strategy led to the highest performance
in the classification task when considering Approach B.
However, one can observe in Table 10 that the mode strat-
egy yielded better results for Approach A, but all the other
imputation strategies achieved similar results. Hence, we
cannot affirm that there is a particular strategy that leads

Table 8 Performance comparison when using the vanilla AE on two held-out test sets (Malaria and Wisconsin Breast Cancer,
respectively)

Top Layers (AEs) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Train

M: Encoding Layers 91.21% ±1.56% 0.81 ±0.03 86.61% ±3.77% 90.84% ±2.91% 88.59% ±1.86%

M: Complete Autoencoder 90.19% ±2.08% 0.80 ±0.04 85.29% ±4.69% 89.69% ±2.83% 87.33% ±2.33%

WBC: Encoding Layers 98.69% ±1.38% 0.97 ±0.03 99.37% ±1.98% 97.14% ±3.69% 98.20% ±1.91%

WBC: Complete Autoencoder 97.90% ±2.07% 0.96 ±0.04 95.54% ±5.18% 99.29% ±2.26% 97.28% ±2.65%

Test

M: Encoding Layers 89.64% 0.78 90.02% 81.40% 85.49%

M: Complete Autoencoder 86.10% 0.70 82.86% 79.34% 81.06%

WBC: Encoding Layers 97.34% 0.95 99.99% 92.86% 96.30%

WBC: Complete Autoencoder 95.74% 0.91 98.44% 90.00% 94.03%

The presented results in the first row (Train) are the 10-fold cross-validation mean values, at the validation set, by selecting the best performing model according to its F1

score. The second row (Test) gathers the results when evaluating the models on the testing phase. For both datasets, two thirds of the data were used in the training phase,
and one third as the held-out in the test phase. M represents the Malaria dataset, and WBC the Wisconsin Breast Cancer one



Falcão Ferreira et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 5):141 Page 13 of 18

Table 9 Performance comparison of the classifier, for the Basic AE, when varying the dimension of its latent vector, in the RNA-Seq input

Dim Top Layers (AEs) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Fixing the AE weights (Approach A)

128∗ AE: Encoding Layers 88.40 ±5.52 0.59 ±0.17 68.39 ±19.13 64.80 ±10.84 65.91 ±13.72

AE: Complete AE 91.77 ±3.13 0.69 ±0.12 80.57 ±11.79 67.00 ±11.24 72.91 ±10.86

64
AE: Encoding Layers 84.83 ±3.05 0.37 ±0.13 59.08 ±15.04 36.40 ±11.23 44.12 ±10.52

AE: Complete AE 88.37 ±3.61 0.56 ±0.14 67.58 ±13.26 59.20 ±10.96 62.94 ±11.39

32
AE: Encoding Layers 84.10 ±2.12 0.22 ±0.16 54.76 ±20.42 15.60 ±14.20 22.55 ±17.08

AE: Complete AE 86.13 ±2.34 0.48 ±0.09 59.22 ±6.90 54.00 ±10.20 56.23 ±8.17

16
AE: Encoding Layers 83.87 ±0.67 0.09 ±0.10 43.75 ±47.60 4.40 ±5.95 7.66 ±9.82

AE: Complete AE 84.17 ±3.23 0.42 ±0.12 52.95 ±11.05 50.00 ±11.89 51.04 ±10.61

Fine-Tuning the AE Weights (Approach B)

128∗ AE: Encoding Layers 99.33 ±0.52 0.98 ±0.02 97.85 ±2.32 98.20 ±1.48 98.01 ±1.55

AE: Complete AE 99.30 ±0.37 0.98 ±0.01 99.00 ±1.06 96.80 ±2.35 97.87 ±1.15

64
AE: Encoding Layers 99.43 ±0.50 0.98 ±0.02 97.86 ±2.12 98.80 ±1.69 98.31 ±1.49

AE: Complete AE 99.30 ±0.29 0.97 ±0.01 98.62 ±1.61 97.20 ±2.15 97.88 ±0.90

32
AE: Encoding Layers 99.03 ±0.55 0.97 ±0.02 97.23 ±2.12 97.00 ±2.54 97.09 ±1.67

AE: Complete AE 99.07 ±0.54 0.97 ±0.02 98.59 ±1.35 95.80 ±3.46 97.13 ±1.71

16
AE: Encoding Layers 98.80 ±0.74 0.96 ±0.02 96.51 ±3.53 96.40 ±1.84 96.42 ±2.16

AE: Complete AE 98.70 ±0.43 0.95 ±0.01 97.78 ±1.99 94.40 ±2.63 96.02 ±1.33

The experiment pipeline remains the same, under the same evaluation metrics. The Dim column represents the latent vector dimension. The ∗ symbol represents the
dimension used as default

to better classification results. Further studies should be
considered on the RNA-Seq data preprocessing step to
support this claim.

It is possible to observe the complete results for all the
experiments in Tables 2, 3, 4, 5, 6, 7, 8, 9 and 10, and also
in Figs. 2, 3 and 4. Since detecting thyroid cancer with

the Basic AE’s encoding part initialization was the com-
bination with the best overall results, for the experiments
summarized in Tables 7, 8, 9 and 10 and Figs. 2, 3 and 4
we used that specific AE to assess if there were changes
in the classification network performance. However, due
to space constraints, we opted to only present the results

Table 10 Performance comparison of the classifier, for the Basic AE, when changing the imputation strategy at the data preprocessing
step

Strategy Top Layers (AEs) Accuracy (%) MCC Precision (%) Recall (%) F1 score

Fixing the AE weights (Approach A)

Mean∗ AE: Encoding Layers 88.40 ±5.52 0.59 ±0.17 68.39 ±19.13 64.80 ±10.84 65.91 ±13.72

AE: Complete AE 91.77 ±3.13 0.69 ±0.12 80.57 ±11.79 67.00 ±11.24 72.91 ±10.86

CV
AE: Encoding Layers 91.93 ±2.13 0.69 ±0.10 79.43 ±6.20 69.40 ±10.96 73.81 ±8.14

AE: Complete AE 93.23 ±1.99 0.74 ±0.08 83.41 ±5.85 74.20 ±9.59 78.31 ±6.95

MFV
AE: Encoding Layers 92.50 ±2.36 0.71 ±0.10 82.60 ±7.41 70.00 ±13.40 75.16 ±9.23

AE: Complete AE 93.27 ±1.71 0.74 ±0.07 84.97 ±4.01 72.40 ±9.74 77.91 ±6.54

Fine-Tuning the AE Weights (Approach B)

Mean∗ AE: Encoding Layers 99.33 ±0.52 0.98 ±0.02 97.85 ±2.32 98.20 ±1.48 98.01 ±1.55

AE: Complete AE 99.30 ±0.37 0.98 ±0.01 99.00 ±1.06 96.80 ±2.35 97.87 ±1.15

CV
AE: Encoding Layers 99.40 ±0.49 0.98 ±0.02 98.63 ±2.04 97.80 ±2.39 98.23 ±1.48

AE: Complete AE 99.30 ±0.53 0.98 ±0.02 99.01 ±1.39 96.80 ±3.29 97.97 ±1.38

MFV
AE: Encoding Layers 99.47 ±0.32 0.98 ±0.01 98.83 ±1.64 98.00 ±2.11 98.39 ±0.98

AE: Complete AE 99.13 ±0.57 0.97 ±0.02 98.77 ±1.71 96.00 ±2.31 97.36 ±1.74

The experiment pipeline remains the same, under the same evaluation metrics. The Strategy column represents the imputation strategy used. The ∗ symbol represents the
default strategy. The following abreviations were used: CV for Constante Value, and MFV for Most Frequent Value
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Fig. 2 Baseline ROC-AUC and Precision-Recall Curves for the RNA-Seq data. Baseline a ROC-AUC and b Precision-Recall curves when detecting
breast cancer detection in the RNA-Seq input data, using a Fully Connected Neural Network (the classification architecture, without the AE as top
layers). Each line represent the different 10 folds for the cross validation

for the breast cancer class, since it had a greater results
variance between strategies, especially for Approach A, as
seen in Table 4.

Conclusions
We compared the performance of a deep neural network
(DNN) when using three different autoencoders (AEs) to
initialize its weights. To do so, each AE was pre-trained
and then attached to the top layers of our classifier. In the
importation phase, two different strategies were studied:
(1) just importing the AE’s encoding layer, and (2) import-
ing all the AE’s layers. Each of the three built architectures
was then trained to classify the input data as one of the
five types of cancer in this study. Two different approaches
were analyzed, in the training process: (A) fixing the
imported weights, and (B) by allowing them to be fine-
tuned during supervised training. Additionally, we studied
(1) how changing the encoding space dimension impacts
the AEs and DNN performances, and (2) how the miss-
ing data replacement strategy influences the performance
in the classification task. We also assessed the impact that
the number of AE imported layers has on the DNN overall
performance.

Furthermore, we extended the generalization study of
this methodology by applying it to two different datasets:
the MalariaScope thin blood smears data and the Wiscon-
sin Breast Cancer tumors datasets.

We outperformed the best result reported in [21],
according not just to the F1 score, but to all the other
evaluation metrics as well. After a 10-fold cross-validation
training process, a full embedding of a pre-trained Basic

AE to the top layers of the DNN (Strategy 2), followed by
fine-tuning, achieved the best overall performance, with
an F1 score of 99.03±1.21. Moreover, we outperformed
as well other established baselines, for the MalariaScope
and Wisconsin Breast Cancer datasets, supporting the
claim that this methodology generalizes well, including
when dealing with other data types. After performing
two distinct held-out datasets, we could conclude that
our models generalize well to unseen and different data,
not overfitting during the training phase. Allowing fine-
tune (Approach B) on the imported weights of the AEs
led undeniably to better results than fixing the weights
of the top layers (Approach A), as can be observed in
the results. Approach A is more sensitive to latent vector
dimension variations, in comparison with a more stable
Approach B. Finally, the results showed no evidence on
which imputation strategy is the best, considering the
RNA-Seq data.

In conclusion, this methodology led to state-of-the-art
performance in cancer classification from gene expres-
sion, strongly supporting that using AE as weight initial-
ization can help DNNs achieving better performances. We
believe that it also has high potential of generalizing well
to other data and problems, as shown in the results using
datasets of features extracted from images.

In the long term, and although some of the data is con-
sidered a toy dataset, we expect that this work will lead
to a more efficient and robust automated system for the
diagnosis of diseases, in particular cancer, providing a
faster diagnostic, and improving the expected treatment
outcome.
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Fig. 3 ROC-AUC and Precision-Recall Curves for the RNA-Seq data, with Approach A. Classification Model ROC-AUC — a to f — and b
Precision-Recall — g to l — curves when detecting breast cancer detection in the RNA-Seq input data, with Approach A (fixing the weights
imported from the AE) combined with both AE importing strategies. Each line represent the different 10 folds for the cross validation
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Fig. 4 ROC-AUC and Precision-Recall Curves for the RNA-Seq data, with Approach B. Classification Model ROC-AUC — a to f — and b
Precision-Recall — g to l — curves when detecting breast cancer detection in the RNA-Seq input data, with Approach B (allowing fine tune on the
weights imported from the AE) combined with both AE importing strategies. Each line represent the different 10 folds for the cross validation



Falcão Ferreira et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 5):141 Page 17 of 18

Abbreviations
AEs: Autoencoders; AUC: Area under the curve; DAE: Denoising autoencoder;
DNN: Deep neural network; GDL: Genome deep learning; ICGC: The
international cancer genome consortium; KPCA: Kernel principal component
analysis; MCC: Matthews correlation coefficient; MLP-SAE: Multilayer
perceptron and stacked denoising autoencoder; MSE: Mean squared error;
PCA: Principal component analysis; ReLU: Rectified linear units; ROC: Receive
operating characteristic; SAE: Sparse autoencoder; SSAE: Stacked sparse
autoencoder; SVM: Support vector machine; TCGA: The cancer genome atlas

Acknowledgements
We would like to thank Fraunhofer AICOS institution, in particular to Dr. Luís
Rosado, for kindly providing us the malaria dataset.

About this supplement
This article has been published as part of BMC Medical Informatics and
Decision Making, Volume 20 Supplement 5, 2020: Selected articles from the
CIBB 2019 Special Session on Machine Learning in Healthcare Informatics and
Medical Biology. The full contents of the supplement are available at https://
bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-
20-supplement-5.

Authors’ contributions
RC and LFT structured the extension of the experimental work. MFF collected
and preprocessed the data and assembled the experiments. MFF also
assessed the results, and wrote the manuscript, always with the supervision
and help of RC and LFT. All authors have read and approved the final version
of this manuscript.

Funding
Publication costs are funded by the authors.

Availability of data and materials
The datasets analysed during the current study are available in the cBioPortal
repository (https://www.cbioportal.org/datasets), and in the Machine Learning
Repository of the University of California Irvine (https://archive.ics.uci.edu/ml/
datasets/Breast+Cancer+Wisconsin+(Diagnostic)). All the RNA-Seq datasets
are from the TCGA PanCancer Atlas project. The Malaria dataset is not public; it
belongs to the Fraunhofer Portugal’s MalariaScope project.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 22 May 2020 Accepted: 8 June 2020 Published: 20 August 2020

References
1. World Health Organization (WHO). Cancer. 2018. https://www.who.int/

health-topics/cancer. Accessed on 22 Nov 2019.
2. World Health Organization (WHO). Cancer Fact Sheet. 2018. https://www.

who.int/en/news-room/fact-sheets/detail/cancer. Accessed on 22 Nov
22 2019.

3. BC Cancer. Change in 5-year survival rates by cancer type for adults in BC,
1997 - 2016. 2019. http://www.bccancer.bc.ca/statistics-and-reports-site/
Documents/Five_Year_Survival_Change_Report_2016_20190321.pdf.
Accessed on 22 Nov 2019.

4. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI.
Machine learning applications in cancer prognosis and prediction.
Comput Struct Biotechnol J. 2015;13:8–17.

5. National Center for Biotechnology Information (NCBI). Gene Expression.
2017. https://www.ncbi.nlm.nih.gov/probe/docs/applexpression/.
Accessed on 25 Nov 2019.

6. The Cancer Genome Atlas (TCGA). The Cancer Genome Atlas. https://
tcga-data.nci.nih.gov/. Accessed on 25 Nov 2019.

7. The International Cancer Genome Consortium (ICGC). The International
Cancer Genome Consortium. https://icgc.org. Accessed on 25 Nov 2019.

8. Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring
Harbor Protocol. 2015;2015(11):951–69.

9. Gao F, Wang W, Tan M, Zhu L, Zhang Y, Fessler E, Vermeulen L, Wang
X. Deepcc: a novel deep learning-based framework for cancer molecular
subtype classification. Oncogenesis. 2019;8(9):44.

10. Sun Y, Zhu S, Ma K, Liu W, Yue Y, Hu G, Lu H, Chen W. Identification of
12 cancer types through genome deep learning. Sci Rep. 2019;9(1):17256.

11. Kim B-H, Yu K, Lee PCW. Cancer classification of single-cell gene
expression data by neural network. Bioinformatics. 2019. https://doi.org/
10.1093/bioinformatics/btz772.

12. Srivastava RK, Greff K, Schmidhuber J. Training very deep networks. In:
Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R, editors.
Advances in Neural Information Processing Systems 28. New York: Curran
Associates, Inc.; 2015. p. 2377–85.

13. Erhan D, Bengio Y, Courville A, Manzagol P-A, Vincent P, Bengio S. Why
does unsupervised pre-training help deep learning? J Mach Learn Res.
2010;11(Feb):625–60.

14. Zheng J, Wang K. Emerging deep learning methods for single-cell
RNA-Seq data analysis. Quant Biol. 2019;7(4):247–54.

15. Xie R, Wen J, Quitadamo A, Cheng J, Shi X. A deep auto-encoder model
for gene expression prediction. BMC Genomics. 2017;18(9):845.

16. Teixeira V, Camacho R, Ferreira PG. Learning influential genes on cancer
gene expression data with stacked denoising autoencoders. In: IEEE
International Conference on Bioinformatics and Biomedicine (BIBM);
2017. p. 1201–5. https://doi.org/10.1109/bibm.2017.8217828.

17. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: Synthetic
minority over-sampling technique. J Artif Intell Res. 2002;16(1):321–57.

18. Xiao Y, Wu J, Lin Z, Zhao X. A semi-supervised deep learning method
based on stacked sparse auto-encoder for cancer prediction using
RNA-Seq data. Comput Methods Programs Biomed. 2018;166:99–105.

19. Ferreira MF, Camacho R, Teixeira LF. Autoencoders as weight
initialization of deep classification networks applied to papillary thyroid
carcinoma. In: Proceedings of the 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM); 2018. p. 629–32. https://doi.org/
10.1109/bibm.2018.8621356.

20. López-García G, Jerez JM, Franco L, Veredas FJ. A transfer-learning
approach to feature extraction from cancer transcriptomes with deep
autoencoders. In: Proceedings of the International Work-Conference on
Artificial Neural Networks. Springer; 2019. p. 912–24.

21. Ferreira MF, Camacho R, Teixeira LF. Autoencoders as weight
initialization of deep classification networks for cancer versus cancer
studies. CoRR. 2020;abs/2001.05253:. 2001.05253.

22. NumPy. NumPy. https://numpy.org. Accessed on 23 Mar 2020.
23. Scikit-Learn. Scikit-Learn: Machine Learning in Python. https://scikit-learn.

org/stable/. Accessed on 23 Mar 2020.
24. Keras. Keras: The Python Deep Learning library. https://keras.io. Accessed

on 23 Mar 2020.
25. Pandas. Pandas Documentation. https://pandas.pydata.org/docs/.

Accessed on 23 Mar 2020.
26. Matplotlib. Matplotlib - Version 3.2.1. https://matplotlib.org. Accessed on

23 Mar 2020.
27. cBioPortal. cBioPortal For Cancer Genomics - Datasets. https://www.

cbioportal.org/datasets. Accessed on 13 Jan 2020.
28. cBioPortal. The cBioPortal Z-Score calculation method. https://github.

com/cBioPortal/cbioportal/blob/master/docs/Z-Score-normalization-
script.md. Accessed on 19 Mar 2020.

29. Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581–92.
30. Fraunhofer AICOS Portugal. DEMalariaScope - Automatic detection of

malaria in blood smears using smartphones. https://www.aicos.
fraunhofer.pt/en/our_work/projects/malariascope.html. Accessed on 18
Mar 2020.

31. Rosado L, Da Costa JMC, Elias D, Cardoso JS. Mobile-based analysis of
malaria-infected thin blood smears: automated species and life cycle
stage determination. Sensors. 2017;17(10):2167.

32. Dua D, Graff C. University of California Irvine Machine Learning
Repository. 2017. http://archive.ics.uci.edu/ml. Accessed on 6 Feb 2020.

33. Rumelhart DE, Hinton GE, Williams RJ. Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1. Cambridge: Press,
MIT; 1986, pp. 318–62. Chap. Learning Internal Representations by Error
Propagation.

https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-20-supplement-5
https://www.cbioportal.org/datasets
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://www.who.int/health-topics/cancer
https://www.who.int/health-topics/cancer
https://www.who.int/en/news-room/fact-sheets/detail/cancer
https://www.who.int/en/news-room/fact-sheets/detail/cancer
http://www.bccancer.bc.ca/statistics-and-reports-site/Documents/Five_Year_Survival_Change_Report_2016_20190321.pdf
http://www.bccancer.bc.ca/statistics-and-reports-site/Documents/Five_Year_Survival_Change_Report_2016_20190321.pdf
https://www.ncbi.nlm.nih.gov/probe/docs/applexpression/
https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
https://icgc.org
https://doi.org/10.1093/bioinformatics/btz772
https://doi.org/10.1093/bioinformatics/btz772
https://doi.org/10.1109/bibm.2017.8217828
https://doi.org/10.1109/bibm.2018.8621356
https://doi.org/10.1109/bibm.2018.8621356
http://arxiv.org/abs/2001.05253
https://numpy.org
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://keras.io
https://pandas.pydata.org/docs/
https://matplotlib.org
https://www.cbioportal.org/datasets
https://www.cbioportal.org/datasets
https://github.com/cBioPortal/cbioportal/blob/master/docs/Z-Score-normalization-script.md
https://github.com/cBioPortal/cbioportal/blob/master/docs/Z-Score-normalization-script.md
https://github.com/cBioPortal/cbioportal/blob/master/docs/Z-Score-normalization-script.md
https://www.aicos.fraunhofer.pt/en/our_work/projects/malariascope.html
https://www.aicos.fraunhofer.pt/en/our_work/projects/malariascope.html
http://archive.ics.uci.edu/ml


Falcão Ferreira et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 5):141 Page 18 of 18

34. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on
International Conference on Machine Learning, ICML’10. USA: Omnipress;
2010. p. 807–14.

35. Goodfellow I, Bengio Y, Courville A. Deep Learning. The MIT Press; 2016.
ISBN: 0262035618.

36. Theis L, Shi W, Cunningham A, Huszár F. Lossy image compression with
compressive autoencoders. CoRR. 2017;abs/1703.00395:.

37. Eraslan G, Simon LM, Mircea M, Mueller NS, Theis FJ. Single-cell RNA-Seq
denoising using a deep count autoencoder. Nat Commun. 2019;10(1):390.

38. Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training
of deep networks. In: Schölkopf B, Platt JC, Hoffman T, editors. Advances
in Neural Information Processing Systems 19. Cambridge: MIT Press; 2007.
p. 153–60.

39. Vincent P, Larochelle H, Bengio Y, Manzagol P-A. Extracting and
composing robust features with denoising autoencoders. In: Proceedings
of the 25th International Conference on Machine Learning, ICML ’08. New
York: ACM; 2008. p. 1096–103.

40. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: A simple way to prevent neural networks from overfitting. J
Mach Learn Res. 2014;15(1):1929–58.

41. Ng A. CS294A Lecture notes - Sparse autoencoder: Standford University.
https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf. Accessed
on 18 Nov 2019.

42. Ioffe S, Szegedy C. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint. 2015.
arXiv:1502.03167.

43. Cybenko G. Approximation by superpositions of a sigmoidal function.
Math Control Signals Syst. 1989;2(4):303–14.

44. Kingma DP, Ba J. Adam: A method for stochastic optimization. CoRR.
2014;abs/1412.6980:.

45. Matthews BW. Comparison of the predicted and observed secondary
structure of t4 phage lysozyme. Biochim Biophys Acta Protein Struct.
1975;405(2):442–51.

46. Sampaio AFT. DL4Malaria: Deep Learning Approaches for the Automated
Detection and Characterisation of Malaria Parasites on Thin Blood Smear
Images. Master’s thesis: Faculty of Engineering, University of Porto; 2019.

47. Mushtaq Z, Yaqub A, Hassan A, Su SF. Performance analysis of
supervised classifiers using pca based techniques on breast cancer. In:
Proceedings of the 2019 International Conference on Engineering and
Emerging Technologies (ICEET); 2019. p. 1–6. https://doi.org/10.1109/
ceet1.2019.8711868.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
https://doi.org/10.1109/ceet1.2019.8711868
https://doi.org/10.1109/ceet1.2019.8711868

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	The data
	RNA-Seq data
	Data of features extracted from images

	Autoencoders
	Basic autoencoder (AE)
	Denoising autoencoder (DAE)
	Sparse autoencoder

	Methodology
	Evaluation
	Baseline

	Results and discussion
	Conclusions
	Abbreviations
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

