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Abstract 

This paper introduces SkinWiseNet (SWNet), a deep convolutional neural network designed for the detection 
and automatic classification of potentially malignant skin cancer conditions. SWNet optimizes feature extraction 
through multiple pathways, emphasizing network width augmentation to enhance efficiency. The proposed model 
addresses potential biases associated with skin conditions, particularly in individuals with darker skin tones or exces-
sive hair, by incorporating feature fusion to assimilate insights from diverse datasets.  Extensive experiments were 
conducted using publicly accessible datasets to evaluate SWNet’s effectiveness.This study utilized four datasets-Mnist-
HAM10000, ISIC2019, ISIC2020, and Melanoma Skin Cancer-comprising skin cancer images categorized into benign 
and malignant classes. Explainable Artificial Intelligence (XAI) techniques, specifically Grad-CAM, were employed 
to enhance the interpretability of the model’s decisions. Comparative analysis was performed with three pre-existing 
deep learning networks-EfficientNet, MobileNet, and Darknet.  The results demonstrate SWNet’s superiority, achiev-
ing an accuracy of 99.86% and an F1 score of 99.95%, underscoring its efficacy in gradient propagation and feature 
capture across various levels. This research highlights the significant potential of SWNet in advancing skin cancer 
detection and classification, providing a robust tool for accurate and early diagnosis. The integration of feature fusion 
enhances accuracy and mitigates biases associated with hair and skin tones. The outcomes of this study contribute 
to improved patient outcomes and healthcare practices, showcasing SWNet’s exceptional capabilities in skin cancer 
detection and classification.
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Introduction
The most important organ of the human body is the 
skin. It protects the body from extreme temperatures, 
UV rays, and chemicals and acts as a waterproof shield. 
The abnormal growth of skin cells may cause skin cancer 

[1]. It occurs mainly outside the body, but can extend to 
other areas, including the eyes, nose, and neck [2]. The 
epidermis, which consists of layers, is usually the tar-
get of such malignant disease [3]. Skin cancers begin as 
precancerous lesions that are not malignant but become 
malignant over time. This disease has many causes that 
may sometimes lead to death. Therefore, early detection, 
regular skin examination procedures, correct diagno-
sis, and treatment are the keys to preventing skin cancer 
[4–6]. Skin cancer is typically detected by doctors who 
identify suspicious areas on the skin. However, recent 
studies [7–9] have shown that the use of advanced arti-
ficial intelligence techniques, such as Convolutional 
Neural Networks (CNN), can aid doctors diagnose dis-
eases earlier stage [10]. This has inspired researchers to 
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develop advanced technological tools for diagnosing skin 
cancer diseases.

The diagnosis of skin cancer involves various meth-
ods such as visual examination, dermoscopy, and biopsy. 
Dermoscopy and the expertise of a physician have sig-
nificantly improved the accuracy of the identification. 
However, manual diagnosis poses challenges, prompting 
the adoption of computer-assisted diagnosis (CAD) when 
expert consultation is limited [11, 12]. Machine learning 
(ML), particularly deep learning utilizing convolutional 
neural networks (CNNs), has transformed the classifi-
cation of skin cancer. Traditional ML methods are less 
prevalent, with deep learning models as effective as der-
matologists in image recognition. Despite challenges like 
insufficient training data, deep learning improves accu-
racy, with a 15–20% enhancement in cancer prediction 
over the past two decades [13]. While some deep CNN 
models increase processing costs, integrating ML into 
computer-aided design (CAD) systems improves tumour 
disease identification and treatment, making the process 
more cost-effective. The fusion of machine learning and 
computer vision in CAD systems significantly enhances 
skin cancer detection, particularly in its early stages [14]. 
AI in medicine is gaining prominence for skin cancer 
diagnosis, providing swift, precise, and consistent dis-
ease recognition. Computer-aided design streamlines the 
identification and treatment of tumour diseases, com-
plementing traditional imaging methods like MRI, PET, 
and X-rays. AI-driven advancements seek to enhance 
outcomes and mortality rates by improving the early 
detection of skin cancer, addressing the constraints of 
subjective and time-consuming diagnostic procedures 
[15].

The following is a summary of the numerous intriguing 
observations revealed by our contributions. 

1. Developed a robust Deep Convolutional Neural Net-
work, SWNet, from scratch, emphasizing network 
width expansion and global average pooling. Estab-
lished the efficacy of the architecture by incorporat-
ing discrete layers of features at each stage, enhanc-
ing feature fusion.

2. Implementation of SWNet algorithm for skin cancer 
classification achieved a 99.95% F1-score distinguish-
ing between benign and malignant cases, surpassing 
the CNN model.

3. Explainable Artificial Intelligence (XAI): We applied 
XAI techniques to interpret model outcomes. 
Enhanced understanding and confidence in results 
through XAI, contributing to the transparency of the 
model’s decision-making process.

4. We conducted benchmarking tests, evaluated model 
robustness, and applied bias mitigation techniques 

for skin cancer classification. We used fine-tuned and 
pre-trained EfficientNet, MobileNet, and Darknet 
models as benchmarks for comparison. Our results 
showed that SWNet outperformed the other mod-
els, highlighting its effectiveness in the field. We also 
demonstrated the significance of feature fusion in 
mitigating biases. We assessed the robustness of our 
models across diverse datasets, including HAM10000 
and ISIC2019_2020. These tests established the reli-
ability of SWNet and its contribution to bias reduc-
tion through feature fusion.

The article is systematically structured, starting with 
a discussion related to the work in the field in “Related 
works”  section. This sets the contextual backdrop for 
the proposed research. “Proposed methodology”  sec-
tion comprehensively explains the method employed in 
this study, elucidating the novel approach and methodol-
ogy applied. “Experimental result”  section presents the 
results, revealing the results and insights gleaned from 
implementing the proposed method. Finally, “Limitations 
and future directions”  section concludes the article by 
offering conclusions drawn from the study and provid-
ing recommendations for further avenues of research in 
the domain. This organization ensures a logical flow of 
information.

Related works
Although non-automated medical communication sys-
tems have shown impressive results, assessing a patient’s 
condition still requires the presence of professional 
medical experts. There is a clear and pressing need for 
automatic skin cancer detection. In this section, we will 
discuss the literature related to skin cancer detection and 
classification using machine learning and deep learning.

In [16], CNN techniques and SVM and KNN machine 
learning classifiers were applied for image feature 
extraction to show the skin lesion image’s borders, tex-
ture, and color. The accuracy rates for the SVM and 
KNN classifiers were 77.8% and 57.3%, respectively. 
When using deep learning, the accuracy grows up to 
85.5%. Despite the excellent result, splitting the image 
into parts can miss some relevant information to pre-
dict the class correctly. In another study, A. Demir et al. 
[17] employed the ResNet-101 and Inception-v3 trans-
fer learning models. Additionally, they implemented 
a data augmentation approach to address the issue of 
overfitting that may arise from training the model on 
a limited dataset. The accuracy achieved by the mod-
els was 84.09% and 87.42%, respectively. T. Emara et al. 
[18] used the Inception V4 model pre-trained on Ima-
geNet on the HAM10000 dataset to diagnose skin can-
cer disorders. The data set displays an imbalance, which 



Page 3 of 22Abdulredah et al. BMC Medical Informatics and Decision Making           (2025) 25:48  

led to the use of a data sampling strategy to address this 
problem. Their model has a rating accuracy of 94.7%.

In 2020, C.N. Vasconcelos et al. [19] trained the ISBI 
2016 dataset with GoogLeNet. The researchers used 
standard data augmentation during sample processing 
to address the issue of an imbalanced training dataset 
influencing CNN performance. Maximum accuracy was 
83.6%. Qasim et al. [20] used the same model to lever-
age knowledge transfer effectively to classify eight dis-
tinct categories of skin lesions in the ISIC 2019 dataset. 
The model achieved a level of accuracy of 94%. Hosny 
et  al. [21] their method based on deep convolutional 
neural network (DCNN) for skin image classification. 
The methodology includes pre-processing to segment 
regions of interest (ROIs), augmenting ROI images with 
rotations and translations, and using different DCNN 
architectures. Deep convolutional neural networks 
(DCNNs) replace the last three layers to improve lesion 
classification. Three datasets were used to evaluate and 
fine-tune this technique. GoogleNet performed well on 
the MEDNODE, DermIS & DermQuest, and ISIC 2017 
datasets, achieving classification accuracies of 99.29%, 
99.15%, and 98.14%, respectively. The model may miss 
important information when medical images are seg-
mented. Diame et  al. [22] Classified seborrheic kera-
tosis and melanoma using three deep-learning models: 
DenseNet161, Inception-v4, and ResNet-152. These 
models’ accuracy was 86.3%, 82.0%, and 88.7%.

In 2022, Ahmadi et al. [23] pre-trained the Inception-
ResNet-v2 CNN on 57,536 lesions. Pre-training helped 
the model identify melanoma in lesions. For classifica-
tion, the model included patient-specific parameters, 
particularly lesion location, age, and sex, in addition to 
the lesion image. The model accuracy was 94.5%. Also, 
Li, Z. [24] Used the pre-trained technique to transfer 
learning Inception-ResNetV1 with the SVM classifier; 
the model was tested on ISIC 2019. A Classification 
accuracy rate of 98% helps diagnose clinical melanoma.

In 2023, K. Mridha, J. Shin, et  al. [25] developed a 
deep learning (DL) prediction model for melanoma 
classification on the HAM10000 dataset, and using a 
data augmentation technique, they also used the result-
ing model interpretation technique (Grad-CAM, Grad-
CAM++) with 82% classification accuracy. Thanka, M. 
Roshni, and colleagues [26] used the VGG16 model as a 
transfer learning technique for feature extraction. These 
features are subsequently fed into the XGBoost classi-
fier and optical gradient boosting machine for severity 
assessment and classification of benign and malignant 
conditions. The integration shows an accuracy level of 
99.1%. The XGBoost and LightGBM models achieve a 
classification accuracy of 99.1% and 97.2%, respectively.

In 2023, B. Tasar presented a modified CNN frame-
work that employed transfer learning to categorize skin 
lesions in dermoscopy images. The model utilized ima-
geNet-pre-trained CNN architectures and underwent 
training on the HAM10000 skin lesions dataset. The clas-
sification accuracy for the modified DenseNet121, VGG-
Net16, ResNet50, MobileNet, and Xception models was 
94.29%, 93.28%, 87.10%, 83.10%, and 80.05%, respectively. 
These findings suggest that the proposed transfer learn-
ing framework surpassed the performance of traditional 
deep learning architectures in classifying skin lesion 
types [27].

M. Tahir et  al. [28] suggested DSCC_Net, a CNN-
based deep-learning network for classifying melanoma. 
Three data sets were used to evaluate it. They struggled 
with the problem of an unequal distribution of categories 
across the data set. DSCC_Net performs better than six 
core models (ResNet-152, Vgg-16, Vgg-19, Inception-V3, 
EfficientNet-B0, and MobileNet), with accuracy scores of 
94.17%, 93.76% retrieval, 94.28%, and 93.93%. F1 among 
the four categories of skin cancer.

G. Qasim et  al. [29] used Deep spiking neural net-
works with surrogate gradient descent to classify 3670 
ISIC 2019 melanoma pictures and 3323 non-melanoma 
photos. Spiking VGG-13 outperformed both VGG-13 
and AlexNet models with an accuracy of 89.57% and an 
F1 score of 90.07%. This improvement occurred with less 
trainable parameters. The study by S. Waheed et al. [30] 
utilized dermoscopy images to demonstrate the applica-
tion of a deep learning system for melanoma identifica-
tion. The researchers achieved an F1 score of 90.87% and 
sensitivity, specificity, and precision scores of 92.46%, 
92.23%, and 92.46%, respectively. In another study, Y. 
Dahdouh et al. [31] used a watershed algorithm in their 
proposal that combines deep learning and reinforcement 
learning techniques to detect and classify skin cancer. 
The proposed system achieved up to 80% accuracy on 
the HAM10000 data set. Using a watershed algorithm 
for image segmentation may only capture relevant image 
information if image gradation is calculated to identify 
potential regions of interest. It can also lead to excessive 
fragmentation if not used carefully.

R. Maalej et al. [32] used Mobilenet as a transfer learn-
ing model to extract features for classifying breast can-
cer histopathological images. This model was trained on 
the Breakhis dataset, and they treated the data imbalance 
using a data augmentation technique; the accuracy of the 
proposed model reached 90.0%.

Deep learning
Recently, the domain of deep learning has demonstrated 
significant efficacy in solving a range of issues related to 
pattern identification and the field of computer vision, 
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including image classification [33, 34]. This technique 
has been effectively showcased in numerous biomedi-
cal image analysis challenges. Classical machine learning 
involves a series of methodologies that require pre-pro-
cessing and identifying relevant features from input data, 
such as extracting features like texture and intensity and 
forming descriptors from images meticulously. Subse-
quently, the models are trained to generate predictions 
using features. However, this methodology is limited by 
the fact that it requires domain expertise for the selection 
of features. A process that can be laborious and may not 
exhaustively extract intricate patterns within complex 
medical images [35]. Figure  1 illustrates the distinction 
between deep learning and machine learning.

On the other hand, the significant advancement of 
deep learning networks, a branch of machine learning 
that utilizes neural networks, particularly those with 
intricate structures comprising numerous layers, has 
facilitated the automated acquisition of characteristics 
from unprocessed data. Convolutional neural networks, a 
prevalent kind of deep learning, demonstrate exceptional 
proficiency in analyzing medical pictures through their 
ability to acquire significant information directly from 
the images hierarchically. Deep learning models can have 
the capability to identify intricate spatial and contextual 
details through an end-to-end learning process. This 
leads to enhanced precision and reliability in making pre-
dictions and managing complex and vital tasks such as 
image assimilation at different scales [35]. Implementing 
this approach has brought about a significant transfor-
mation in medical image analysis. It has effectively mini-
mized the reliance on subjective and manually crafted 
features, leading to a substantial enhancement in diag-
nostic precision and the ability to detect diseases. Nev-
ertheless, this challenge still exists due to various factors, 
including low image resolution, overlapping elements, 
intricate shapes, etc.

In summary, traditional machine learning methods in 
medical image analysis are heavily dependent on manual 
features and traditional algorithms. In contrast, deep 
learning techniques, particularly Convolutional Neural 
Networks (CNNs), autonomously acquire hierarchical 
features directly from raw images. This characteristic of 
deep learning contributes to enhanced accuracy and per-
formance in medical image analysis. The primary distinc-
tion resides in the automation of feature extraction and 
representation, rendering deep learning highly advanta-
geous for collecting nuanced patterns seen in intricate 
medical images [36]. A CNN is a feed-forward neural 
network that, as depicted in Fig.  2, consists of one or 
more convolutional layers, followed by pooling layers.

AlexNet is a prominent CNN because it was first devel-
oped in 2012 [37]. This development includes many 
improvements. First, I used rectified linear unit (ReLU) 
activation to increase the non-linearity of the network, 
which helped solve gradient descent problems. To avoid 
overfitting, it also applied a dropout technique, similar 
to regularization, which involves stochastic activation 
and deactivation of neurons across all layers. By activat-
ing neurons in various ways, we can force data down 
new paths, improving the network’s generalization abil-
ity. Finally, data augmentation strengthens the network 
by emphasizing image properties rather than the images 
themselves. It is implemented by providing images that 
have been arbitrarily cropped, rotated, and translated 
before being fed into the network. Finally, additional 
convolutional layers are placed before pooling layers to 
improve classification accuracy.

Afterwards, the VGG16 network was introduced, with 
some improvements included [38]. It has improved the 
depth of the network, allowing it to learn more com-
plex features. It also used 3 x 3 convolutional filters and 
a maximum of 2 x 2 pooling layers throughout the net-
work. This simplicity made it easy to understand and 

Fig. 1 Illustrating the difference between ML and DL



Page 5 of 22Abdulredah et al. BMC Medical Informatics and Decision Making           (2025) 25:48  

iterate. Small convolutional filters enabled it to capture 
more detailed features in early layers. It also used dropout 
regulation, which helped reduce overfitting by randomly 
turning off a portion of a neuron during training. A deep 
convolutional neural network architecture is GoogleNet. 
It was introduced in 2014 and used numerous parallel 
convolutional layers using different filter sizes to cap-
ture features in photos at various scales. This framework 
architecture makes image recognition tasks more accu-
rate and efficient. ResNet (Residual Network) is a deep 
neural network architecture that uses skip connections to 
solve the problem of vanishing gradients and make very 
deep network training possible [39]. The DenseNet net-
work has been designed to incorporate a highly intricate 
structure wherein the blocks of layers are interconnected 
[40]. However, MobileNet is a lightweight convolutional 
neural network model for efficient inference on mobile 
and embedded devices [37]. The networks mentioned 
above have been developed to categorize various medi-
cal image classification tasks efficiently [41]. We aim to 
design an extended convolutional neural network to take 
different features from multiple levels and integrate them 
at each network stage, facilitating efficient gradient prop-
agation and bringing significant benefits.

Proposed methodology
Early skin cancer detection can save patients’ lives and 
increase their chances of survival. This section contains 
several steps, which are described below.

 Data gathering
Data acquisition includes the data collection process 
obtained via the electronic platform. We used four data 
sets containing images of skin cancer, divided into benign 
and malignant categories. The first dataset is taken from 
(https:// www. kaggle. com/ datas ets/ hasna injav ed/ melan 
oma- skin- cancer). The skin cancer melanoma dataset 

contains 10,605 images. Skin cancer of melanoma is a 
deadly cancer. This data set will be useful for developing 
deep learning models for accurate classification of mel-
anoma. Images were 300 pixels on the longest side and 
saved in JPEG file format. Figure 3 shows a sample of the 
data set. The second dataset is from the International 
Skin Imaging Collaboration (ISIC) (https:// www. kaggle. 
com/ datas ets/  nodou bttome/ skin- cance r9- class esisic). 
This collection consists of 2357 images of malignant and 
benign tumours. The third dataset is from Skin Cancer 
MNIST: HAM10000 (https:// www. kaggle. com/ datas ets/ 
kmader/ skin- cancer- mnist- ham10 000), which is a folder 
named HAM10000_images_part_1 containing a set of 
images with names. An Excel file containing data related 
to those images is in the folder. We extracted them from 
the folder so that the df, bkl, and nv images are in the DX 
column in Excel and put them in a folder on the desk-
top called Benign. Other images within the same dx col-
umn, namely mel, bcc, ak, and akiec, are also placed in a 
folder on the desktop that we call malicious. This collec-
tion consists of 10,015 images of benign and malignant 
tumors. The fourth dataset is from (https:// www. kaggle. 
com/ datas ets/ qikan gdeng/ isic- 2019- and- 2020- melan 
oma- datas et); this dataset is a set of melanoma images 
from the ISIC2019 and ISIC2020 challenge datasets; 
consisting of 11449 images for malignant and benign 
tumours. In this study, the same data are used. The data-
set consists of images divided into two parts: 80% were 
used for training and 20% for testing. This study uses 
publicly available datasets. Per the dataset guidelines, no 
additional ethics approval is needed for secondary use.

Data pre‑processing
After collecting the preprocessing is done for the images 
received from the dataset. Thus, all images were resized 
to a uniform size of 224 pixels in width and 224 pix-
els in height before being input into the deep learning 

Fig. 2 The basic structure of CNN

https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer
https://www.kaggle.com/datasets/hasnainjaved/melanoma-skin-cancer
https://www.kaggle.com/datasets/%20nodoubttome/skin-cancer9-classesisic
https://www.kaggle.com/datasets/%20nodoubttome/skin-cancer9-classesisic
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/datasets/qikangdeng/isic-2019-and-2020-melanoma-dataset
https://www.kaggle.com/datasets/qikangdeng/isic-2019-and-2020-melanoma-dataset
https://www.kaggle.com/datasets/qikangdeng/isic-2019-and-2020-melanoma-dataset
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model,order to be compatible with the inputs of our pro-
posed model and with the pre-trained model.

Pre‑trained CNN architectures
Leveraging pre-trained convolutional neural networks 
(CNNs) offers the potential for refinement through 
fine-tuning with ImageNet, which is particularly advan-
tageous in medical image datasets where expansive 
networks can adeptly learn task-specific features [42]. 
Extensive research [43] underscores the efficacy of trans-
fer learning in augmenting the performance of medi-
cal image classification. In our exploration, we selected 
EfficientNet, MobileNet, and Darknet CNN models with 
careful consideration of the number of layers. The pro-
cedural stages of our transfer learning approach are out-
lined in Fig. 4.

EfficientNet, distinguished by a compound scaling 
method, dynamically adjusts its layer count based on 
model variants (e.g., B0, B1, B2). Introducing a balancing 
factor for efficient scaling of depth, width, and resolution, 
this architecture is celebrated for its outstanding perfor-
mance with diminished parameters and computational 
demands, aligning seamlessly with the demands of medi-
cal image classification tasks.

DarkNet, initially crafted for YOLO (You Only Look 
Once) object detection, showcases an impressive array of 
53 convolutional layers. Operating with an input size of 
224x224x3, Darknet employs deep layers to capture intri-
cate features, establishing itself as a compelling choice for 
the classification of skin pathology.

MobileNet, now equipped with 28 convolutional layers 
and maintaining a standardized input size of 224x224x3, 
optimizes computational efficiency through depth-
wise separable convolutions. This technique partitions 
regular convolutions into depth and pointwise layers, 

diminishing parameters and computational intricacies. 
MobileNet is particularly well-suited for the classifica-
tion of skin pathology, especially in resource-constrained 
environments. Retraining these pre-existing networks 
on our dataset shifted our focus to discerning between 
normal and pathological skin conditions. The promi-
nent instances of transfer learning for classification 
now encompass EfficientNet, MobileNet, and Darknet 
networks.

 Proposed approach‑ SWNet model
This research paper presents a new design for a deep 
convolutional neural network called SWNet, which aims 
to improve the identification of critical elements related 
to the categorization of melanoma, a type of skin can-
cer. The system is designed based on a directed acyclic 
graph (DAG). The classification of melanoma requires a 
network with a more complex structure to extract more 
features, which helps to distinguish between normal and 
abnormal classes. The proposed model has an advantage 
in expanding its width without increasing computational 
cost significantly, which increases the amount of infor-
mation that can be acquired and improves precision. 
The overall process of the classification methodology is 
shown in Fig. 5. The SWNet architecture comprises mul-
tiple layers, namely:

1. Initially, an Input layer consists of cropping the input 
image into 224×224 pixels. Cropping the image to a rea-
sonable size helps to retain relevant information while 
reducing computational overhead and ensuring compat-
ibility with the proposed model, standard, efficient pro-
cessing, and improved generalizability across different 
tasks. This task aims to classify these patches into normal 
and abnormal categories. It makes it possible to analyze 

Fig. 3 Samples of patches with labels from the dataset
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and treat the selected regions separately, which can be 
useful in different computer vision tasks.

2. The convolutional layer is a fundamental compo-
nent of convolutional neural networks (CNNs). This layer 
applies convolutions to the output of the preceding layer. 
The set of filters is learnable because the convolution fil-
ter is defined by its weights. The two-dimensional acti-
vation maps of the corresponding filters are generated 
by varying the height and width of the input volume. It 
is essential to observe that each filter possesses a com-
parable depth to entries [44]. Furthermore, the output’s 
dimensions can be controlled by adjusting three hyper-
parameters: zero padding, stride, and depth. Zero pad-
ding involves adding zeroes around the boundaries of the 
input to maintain its size. Stride pertains to the number 

of pixels the filter skips across the image. Depth, on the 
other hand, indicates the quantity of filters applied to the 
input image. These filters can identify different struc-
tures, including blobs, corners, edges, etc. This research 
utilizes a model of 33 convolutional layers, and increas-
ing the numbe of layers in convolutional neural networks 
(CNNs) makes it possible to extract hierarchical features, 
which improves the model’s ability to capture complex 
patterns. Deeper networks provide better representa-
tion and increased ability to learn complex data, each 
featuring 3 × 3 filters. Following each convolutional layer, 
subsequent layers of Batch Normalization (BN) and the 
Rectified Linear Unit (ReLU) are incorporated. 2. The 
convolutional layer is a fundamental component of con-
volutional neural networks (CNNs). This layer applies 

Fig. 4 Procedures were performed using our method of knowledge transfer
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convolutions to the output of the preceding layer. The 
set of filters is learnable because the convolution filter 
is defined by its weights. The two-dimensional activa-
tion maps of the corresponding filters are generated by 
varying the height and width of the input volume. It is 
essential to observe that each filter possesses a compa-
rable depth to entries [44]. Furthermore, the output’s 
dimensions can be controlled by adjusting three hyper-
parameters: zero padding, stride, and depth. Zero pad-
ding involves adding zeroes around the boundaries of the 

input to maintain its size. Stride pertains to the number 
of pixels the filter skips across the image. Depth, on the 
other hand, indicates the quantity of filters applied to the 
input image. These filters can identify different struc-
tures, including blobs, corners, edges, etc. This research 
utilizes a model of 33 convolutional layers, and increas-
ing the numbe of layers in convolutional neural networks 
(CNNs) makes it possible to extract hierarchical features, 
which improves the model’s ability to capture complex 
patterns. Deeper networks provide better representation 

Fig. 5 illustrates our classification pipeline
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and increased ability to learn complex data, each fea-
turing 3 × 3 filters. Following each convolutional layer, 
subsequent layers of Batch Normalization (BN) and the 
Rectified Linear Unit (ReLU) are incorporated. SWNet’s 
complex architecture achieves high accuracy but comes 
with significant computational demands, which can be 
challenging in resource-constrained clinical settings. 
Trade-offs between model complexity, inference time, 
and deployment feasibility must be carefully considered. 
Strategies such as model pruning, quantization, and 
lightweight versions can optimize SWNet for real-world 
applications. Balancing performance and computational 
cost is essential for effective clinical integration.

3. Batch normalization is a method employed in 
machine learning and deep learning models to normalize 
the activations of a neural network layer by adjusting and 
scaling them. This layer is used to normalize every input 
channel within a mini-batch. This technique accelerates 
the Convolutional Neural Networks (CNNs) training 
process and reduces the network initialization’s sensitiv-
ity [45]. This study places the batch normalization layer 
between the convolutional and ReLU layers. This work 
incorporates 37 batch normalization layers; these layers 
help stabilize the training process in deeper models. The 
mechanism of the batch normalization layer involves the 
normalization of channel activations through the sub-
traction of the mini-batch average and division by the 
standard deviation of the mini-batch to enhance stabil-
ity, elevate learning rates, decrease reliance on explicit 
regularization, and enhance the management of gradient 
issues.

4. The Rectified Linear Unit (ReLU) layer filters infor-
mation by using the max (0, x) function, where x rep-
resents the neuron’s input [46]. ReLU benefits neural 
networks by introducing nonlinearity, addressing the 
vanishing gradient problem, and providing computa-
tional efficiency.

5. The Addition Layer combines the inputs from two or 
more neural network layers. All inputs must have identi-
cal dimensions for this layer to function.

6. The average pooling layer divides its input into rec-
tangular pooling zones of various sizes, such as 2 × 2, 3 x 
3, etc. It calculates the average values in each smaller spa-
tial block [47]. Average pooling extracts normalized fea-
ture information from significant and insignificant pixel 
data. Max polling emphasizes edges, corners, and lines 
to improve an image. In the final stage of the network, 
we use global average pooling instead of max pooling to 
avoid losing some attributes to max pooling. All of these 
qualities, large or small, help differentiate classes.

7. Dropout layers prevent overfitting and improve 
model performance. This layer activates and deactivates 
neurons randomly [48]. In our work, two dropout lay-
ers are employed between fully connected layers with a 
dropout probability of p = 0.5.

8. Fully Connected (FC) Layer: All of the neurons from 
the previous layer are connected to all of the neurons 
in this layer. This layer mixes the attributes that can be 
used to divide skin patches into two groups: normal and 
abnormal [47]. Our suggested SWNet comprises three 
FC layers, which led to performance improvements.

Figure  6 demonstrates the utilization of the Softmax 
function for categorization. The output layer resides at 
the highest location within the complete and ultimate 
connected layer, as illustrated in Fig.  7. The total num-
ber of SWNet layers is 113. The image classification task 
requires a deep architecture to better capture complex 
and essential image patterns through a deeper network. 
This provided us with better accuracy and performance 
on other metrics, as shown in Table 1.

SWNet’s architecture, based on CNNs, is highly gen-
eralizable and can be adapted to various image clas-
sification tasks, including medical and non-medical 
applications. Its feature extraction techniques, using mul-
tiple paths, enhance versatility across different datasets. 
Robust performance metrics ensure easy adaptation to 
new tasks, while its compatibility with transfer learning 
enables leveraging learned features for other domains. 
These attributes make SWNet a scalable framework 
beyond skin cancer detection.

Fig. 6 Overview of the network training procedures
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The new SWNet architecture helps to obtain a multi-
level advantage at each step. With each wrapping layer, 
there are more differentiating attributes. Figure 8 shows 
the activation for both normal and diseased epidermis 
classes. The model and pre-trained models utilized in 
this study were trained on a dataset consisting of 10605 
images for 100 epochs until the learning process reached 
a point of convergence. SWNet is a network proven to be 
the best for classifying skin cancer. SWNet architecture 
has been built entirely from scratch. For this experiment, 
we used a RAM of 16 GB and a GPU of 8 GB. The experi-
ments were carried out using Matlab R2023a.

Feature fusion
Feature fusion is a methodology employed to enhance 
the effectiveness of machine learning models by combin-
ing features sourced from diverse origins. In the specific 
context of skin cancer detection, this approach proves 
advantageous as it amalgamates features from disparate 
datasets of skin cancer images, improving the model’s 
accuracy. Various methods exist for implementing fea-
ture fusion [49–51].

One conventional method entails the simple concat-
enation of features from different datasets. Although this 
approach is straightforward, it may need to be more effi-
cient when dealing with datasets that differ in the quan-
tity of features. Alternatively, more advanced techniques 
like canonical correlation analysis (CCA) or support vec-
tor machines (SVMs) can be utilized for feature fusion. 
These sophisticated methods excel in capturing intricate 
relationships between features from diverse datasets, 
ultimately enhancing the model’s overall performance.

Table 1 Presents the architectural components of the proposed 
SWNet model

Name of layer Kernel size and stride Activations

Input layer 224×224×3

Conv1, BN1, ReLU1 Conv1: Kernel size=3×3 224×224×32

Conv2, BN2, ReLU2 Conv2: Kernel size=3×3, stride=1 224×224×32

Conv3, BN3, ReLU3 Conv3: Kernel size=3×3, stride=2 112×112×32

Conv4, BN4, ReLU4 Conv4: Kernel size=3×3, stride=1 224×224×32

Conv5, BN5, ReLU5 Conv5: Kernel size=3×3, stride=2 112×112×32

Conv6, BN6, ReLU6 Conv6: Kernel size=3×3, stride=1 224×224×32

Conv7, BN7, ReLU7 Conv7: Kernel size=3×3, stride=2 112×112×32

Conv8, BN8, ReLU8 Conv8: Kernel size=3×3, stride=1 224×224×32

Conv9, BN9, ReLU9 Conv9: Kernel size=3×3, stride=2 112×112×32

Concat1, BNConcat1 Concatenation of four inputs 112×112×128

Conv10,BN10,ReLU10 Conv10: Kernel size=3×3, 
stride=1

112×112×64

Conv11, BN11, ReLU11 Conv11: Kernel size=3×3, 
stride=2

56×56×64

Conv12, BN12, ReLU12 Conv12: Kernel size=3×3, 
stride=1

112×112×64

Conv13, BN13, ReLU13 Conv13: Kernel size=3×3, 
stride=2

56×56×64

Conv14, BN14, ReLU14 Conv14: Kernel size=3×3, 
stride=1

112×112×64

Conv15, BN15, ReLU15 Conv15: Kernel size=3×3, 
stride=2

56×56×64

Conv16, BN16, ReLU16 Conv16: Kernel size=3×3, 
stride=1

112×112×64

Conv17, BN17, ReLU17 Conv17: Kernel size=3×3, 
stride=2

56×56×64

Concat2, BNConcat2 Concatenation of four inputs 56×56×64

Conv18, BN18, ReLU18 Conv18: Kernel size=3×3, 
stride=1

56×56×64

Conv19, BN19, ReLU19 Conv19: Kernel size=3×3, 
stride=2

28×28×128

Conv20, BN20, ReLU20 Conv20: Kernel size=3×3, 
stride=1

56×56×128

Conv21, BN21, ReLU21 Conv21: Kernel size=3×3, 
stride=2

28×28×128

Conv22, BN22, ReLU22 Conv22: Kernel size=3×3, 
stride=1

56×56×128

Conv23, BN23, ReLU23 Conv23: Kernel size=3×3, 
stride=2

28×28×128

Conv24, BN24, ReLU24 Conv24: Kernel size=3×3, 
stride=1

56×56×128

Conv25, BN25, ReLU25 Conv25: Kernel size=3×3, 
stride=2

28×28×128

Concat3, BNConcat3 Concatenation of four inputs 28×28×512

Conv26, BN26, ReLU26 Conv26: Kernel size=3×3, 
stride=1

28×28×256

Conv27, BN27, ReLU27 Conv27: Kernel size=3×3, 
stride=2

14×14×256

Conv28, BN28, ReLU28 Conv28: Kernel size=3×3, 
stride=1

28×28×256

Conv29, BN29, ReLU29 Conv29: Kernel size=3×3, 
stride=2

14×14×256

Table 1 (continued)

Name of layer Kernel size and stride Activations

Conv30, BN30, ReLU30 Conv30: Kernel size=3×3, 
stride=1

28×28×256

Conv31, BN31, ReLU31 Conv31: Kernel size=3×3, 
stride=2

14×14×256

Conv32, BN32, ReLU32 Conv32: Kernel size=3×3, 
stride=1

28×28×256

Conv33, BN33, ReLU33 Conv33: Kernel size=3×3, 
stride=2

14×14×256

Concat4, BNConcat4 Concatenation of four inputs 14×14×1024

Average polling layer 1×1×1024

Fc1 300 fully connected 1×1×300

Drop1 Dropout layer with learning 
rate:0.5

1×1×300

Fc2 64 fully connected 1×1×64

Drop2 Dropout layer with learning 
rate:0.5

1×1×300

Fc3 (Softmax layer) 0= Benign, 1= Malignant 1×1×2
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In skin cancer detection, multi-dataset feature fusion 
emerges as a promising strategy to address the challenge 
of data scarcity. The scarcity issue arises due to the lim-
ited availability of labeled examples of skin cancer, hin-
dering the training of accurate and adaptable machine 
learning models for new data. By amalgamating fea-
tures from multiple datasets, multidataset feature fusion 
expands the pool of labeled data accessible to the model. 
This augmentation plays a crucial role in improving both 
the accuracy of the model and its ability to adapt to new 
data [52]. Figure 9 shows the fusion structure.

Integrating multi-dataset feature fusion into skin can-
cer detection brhas several benefits. First, it improves 

the accuracy of skin cancer detection models. Second, it 
improves generalizability, allowing these models to per-
form effectively on new and unseen data. Third, multi-
dataset feature fusion addresses overfitting in skin cancer 
detection models.

However, adopting multi-dataset feature fusion in skin 
cancer detection is challenging. Ensuring compatibility 
between datasets in terms of feature representation and 
labeling poses a significant obstacle. The computational 
complexity of specific feature fusion methods also pre-
sents a potential drawback. Furthermore, interpreting the 
outcomes of models utilizing multi-dataset feature fusion 
can be intricate.

Fig. 7 SWNet architecture. Where: CONV = Convolutional layer; BN = Batch Normalization layer; Relu = Rectified Linear Unit layer; Concat = 
Concatenation Layer (Combines the inputs from two or more neural network layers); BNConcat = Batch Normalization Concatenation layer; Drop = 
Dropout layer; FC = Fully Connected Layer
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Despite these challenges, multi-dataset feature fusion 
remains a promising avenue for advancing skin cancer 
detection. With careful design and implementation, it 
holds the potential to significantly enhance the accuracy 
and adaptability of skin cancer detection models.

Explainable artificial intelligence(XAI)
Deep learning networks are commonly characterized 
as “black boxes” due to their lack of transparency on 
the underlying rationale behind the network’s decision-
making process [53, 54]. The utilization of deep learning 

Fig. 8 a, b Features map for benign and malignant

Fig. 9 Feature fusion diagram
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networks is increasingly prevalent across numerous dis-
ciplines, including medical care, so understanding why 
the network makes a particular decision is critical.

A subset of interpretability techniques called visualiza-
tion methods uses visual illustrations to describe what 
the network is looking at and its predictions. This topic 
focuses on post-training techniques that annotate predic-
tions made by a network trained on image data using test 
images [55, 56].

We incorporated interpretable artificial intelligence 
(XAI) techniques into our proposed model to ensure 
transparency and interpretability. Specifically, we used 
Grad-CAM to identify features of interest, generate inter-
pretations of the trained model’s predictions, and evalu-
ate model reliability. The Grad-CAM heatmap is a visual 
representation that identifies the specific regions within 
an image that have the most significant influence on the 
prediction of a target. By superimposing a Grad-CAM 
heat map onto the original image, it becomes possible to 
observe how parts of the image or input data that influence 
the model’s decision are highlighted and to assign relevance 
scores to different features by analyzing the gradients or 
heat maps produced by Grad-CAM, thus giving us a clear 
understanding of the model’s predictions. The classification 
score hierarchy concerning convolutional features gener-
ated by the network is used to ascertain which regions of 
the image hold the highest importance for classification 
purposes. The following Fig. 10 illustrations are part of our 

target applications for test images by using Grad-CAM for 
9 layers.

Experimental result
The dataset was partitioned into two phases: a train-
ing phase and a testing phase. We conducted a series of 
experiments on the dataset to evaluate the classification 
performance of our network, as well as the fine-tuned net-
works that were employed. Applying interpretable artifi-
cial intelligence (XAI) techniques significantly improved 
the interpretability of our proposed model. The generated 
interpretations allowed us to identify the main factors that 
influence the model predictions and understand their rea-
sons. By analyzing the explanations provided, we could 
confirm the model’s consistency with domain knowledge 
and identify potential areas for improvement.

An F1 score is used to evaluate the performance of the 
proposed and finetuned models. F1_score represents the 
balance between recall (R) and precision (P), two crucial 
characteristics for assessing the proposed technique. Preci-
sion, recall, and F1_score are computed using Eqs. (1), (2), 
and (3).

(1)Precision =
TP

TP+ FP

Fig. 10 Images taken using Grad-CAM
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The number of images that the network correctly clas-
sifies as relevant is TP (true positive). The number of 
images that the network correctly classifies as irrelevant 
is TN (True Negative). The number of images that the 
network mistakenly classifies as relevant is FP (False Pos-
itive). The number of relevant images that the network 
cannot recognize is FN (False Negative), as seen in the 
general confusion matrix Fig. 11a, and b represents our 
data confusion matrix.

The model was trained using the SGD optimizer with a 
learning rate 0.001 and other specified hyperparameters 
such as batch size. The optimal outcome was reached by 
executing 100 epochs, resulting in an accuracy metric of 
99.86%. Figure 12 illustrates the process of our training.

In Table  2, a comparison is presented between the 
current study and previous research. The metrics of the 
proposed SWNet were reported using the Softmax clas-
sifier, demonstrating its superior performance. SWNet 
achieved the highest standards of precision, recall, and 
F1-score at 100%, 99.90%, and 99.95%, respectively. These 
results conclude that SWNet outperforms existing mod-
els as a robust tool for skin cancer detection.

Figure  13 displays the prediction of some test images 
using SWNet with Explainable AI (XAI) technique. 

(2)Recall =
TP

TP+ FN

(3)F1_Score =
Precision× Recall

Precision+ Recall

Table  3 compares SWNet with contemporary networks 
for classification, assessing their performance across vari-
ous metrics. The evaluated networks include Efficient-
Net, MobileNet, Darknet, and the proposed SWNet. 
The metrics considered are Precision, Recall, Specificity, 
F1-Score, and Accuracy, providing a holistic view of the 
classification capabilities of each network.

EfficientNet achieves a Precision of 89.05%, recall of 
89.77%, Specificity of 88.03%, F1-Score of 86.39%, and 
Accuracy of 91.88%. MobilNet follows closely with a Pre-
cision of 89.64%, recall of 90.22%, specificity of 87.60%, 
F1-Score of 92.23%, and an Accuracy of 93.2%. Darknet 
outperforms both with a Precision of 91.66%, Recall of 
93.10%, specificity of 90.18%, F1-Score of 92.17%, and an 
Accuracy of 94.44%.

Notably, the proposed SWNet surpasses all, achieving 
exceptional results across all metrics. SWNet attains a 
perfect precision of 100%, an impressive recall of 99.90%, 
a perfect specificity of 100%, an outstanding F1-Score of 
99.95%, and an accuracy of 99.86%. These results high-
light the superior classification performance of SWNet 
compared to the other modern networks, making it a 
compelling choice for the task.

SWNet’s perfect precision and specificity indicate its 
ability to minimize false positives, which is essential in 
applications where misclassifying a positive instance is 
critical. The high recall underscores its effectiveness in 
capturing true positive instances, while the remarkable 
F1-Score reflects a balance between Precision and Recall. 
The overall high accuracy further solidifies SWNet’s 

Fig. 11 The proposed confusion matrix of SWNet
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position as a robust and reliable choice for classifica-
tion tasks, outperforming well-established networks in 
the field. In summary, SWNet sets a new benchmark 
for classification tasks, making it a compelling choice 
for applications requiring high precision, reliability, and 
interpretability.

The provided Table  4 presents a comparative analy-
sis of several neural network models based on various 
parameters. Each model is assessed according to its 

number of convolution layers, the quantity of convolu-
tion kernels employed, the presence of pooling layers, 
the utilization of batch normalization, the count of fully 
connected layers, and the recognition time. Efficient-
Net showcases a comprehensive architecture with its 
65 convolution layers and a substantial number of con-
volution kernels (3,328,992). It incorporates 17 pool-
ing layers, utilizes batch normalization, and boasts 49 
fully connected layers, achieving a recognition time 
of 15 milliseconds. In contrast, MobileNet features 
fewer convolution layers (15) and a moderate number 
of convolution kernels (4,253,864), with only one pool-
ing layer and no batch normalization. Despite its sim-
pler architecture, MobileNet demonstrates a shorter 
recognition time of 10 milliseconds. Darknet, with 18 
convolution layers and a significant number of con-
volution kernels (19,810,176), emphasizes batch nor-
malization across its architecture. However, it exhibits 
a longer recognition time of 25 milliseconds. Finally, 
the proposed SWNET model introduces 33 convolu-
tion layers and a notable number of convolution ker-
nels (9,368,192), along with batch normalization and 37 
fully connected layers, resulting in a recognition time 
of 20 milliseconds. These specifications offer insights 
into theach model’s computational complexities and 
inference speeds enabling informed decisions regarding 
their suitability for specific applications.

On the other hand, we conducted several experi-
ments to test the proposed model on different sets of 

Fig. 12 Illustration of training process

Table 2 Comparison of SWNet with similar studies

Net work Year Precision Recall F1‑Score Accuracy

S. Waheed et at. [30] 2023 92.46% 92.46% 90.87% 91%

Y. Dahdouh, et al. [31] 2023 - - - 80%

M. Tahir, et al. [28] 2023 94.17 93.76 93.93 94.28

Proposed SWNet 2024 100% 99.90 99.95 99.86

Table 3 Comparison of SWNet with modern networks for 
classification

Model Precision Recall Specificity F1‑Score Accuracy

EfficientNet [42] 89.05 89.77 88.03 86.39 91.88

Mobilnet [37] 89.5 90.22 87.60 92.23 93.2

Darknet [43] 91.66 93.10 90.18 92.17 94.44

Proposed 
SWNet

100 99.90 100 99.95 99.86
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Fig. 13 Predictions of test samples by SWNet enhanced with explainable artificial intelligence (XAI)

Table 4 Models parameters where N1: No. convolution layers; N2: No. convolution kernels; N3: No. pooling layers; N4: No. Batch 
normalization; N5: No.fully connected layer: N6: Recognition Time; GAP: Global Average Pooling

Network N1 N2 N3 N4 N5 N6

EfficientNet [42] 65 3328992 17 (GAP) 49 1 15 ms

MobilNet [37] 15 4253864 1 (GAP) 27 0 10 ms

Darknet [43] 18 19810176 6 (Max pooling) 18 1 25 ms

Proposed SWNet 33 9368192 1 (GAP) 37 3 20 ms

Table 5 Perforance comparsion of the used dataset in our experiment

Dataset Acc. Sen. Spe. Pre. F1‑Score # Images

Mnist-ham10000 [57] 81.93 55.73 85.71 36.06 43.79 10015

ISIC2019 [58] 84.76 84.08 85.39 84.08 84.08 2099

ISIC2019_2020 [59] 91.09 92.60 90.01 86.97 89.70 11449

Melanoma Skin [60] 99.86 99.90 100 100 99.95 10605
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databases to compare performance. The results are 
shown in Table 5.

Table 5 presents the outcomes of our proposed method 
using the mnist-HAM10000 dataset, revealing an accu-
racy of 81.93%. Despite having the most significant num-
ber of training images among the datasets, this accuracy 
may not suffice for specialists to rely on, as indicated by 
the low F-score of 43.79%, signifying an imbalance in 
the data. The model exhibits bias towards the class with 
a higher volume of data. Conversely, with the ISIC2019 
dataset containing a smaller training set of 2357 images, 
the accuracy improves to 84.76%. However, in experi-
ments with the ISIC-2019–2020 melanoma dataset, the 
model achieves an accuracy of 91.09% and an F-score 
of 89.70%, surpassing previous results. Despite this 
improvement, the model needs to meet the required 
accuracy for diagnosing diseases due to the prevalence 

of darkness in the background of trained photomicro-
graphs. Nevertheless, the proposed SWNet model dem-
onstrates superior performance in early skin cancer 
detection, successfully discerning complex differences 
between benign and malignant behaviors, and showcas-
ing its effectiveness across multiple databases.

Skin cancer bias mitigation in dataset
The Skin Cancer dataset poses a potential risk of bias 
in AI models, as seen in Fig.  14, explicitly affecting the 
SWNet model’s interpretation of darkness as a circu-
lar image, a consequence of microscope artefacts. This 
bias has the potential to impede the model’s ability to 
generalize effectively, creating challenges in adapting 
to the diverse and non-circular patterns characteristic 
of real-world skin abnormalities. Additionally, the data-
set’s limitations in adequately representing various skin 

Fig. 14 The initial column displays the ground truth images, the second column showcases the outcomes post-classification, and the third column 
exhibits the Grad-CAM visualizations
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types, ethnicities, and conditions further undermine the 
model’s robustness across diverse populations, giving 
rise to concerns regarding potential misdiagnoses and 
oversimplification of the nuanced manifestations of skin 
cancer. To address these challenges, a diverse dataset is 
necessary to represent different skin types, ethnicities, 
and conditions. This inclusivity is essential for fostering 
a more comprehensive learning process. Augmenting the 
dataset through rotation and scaling becomes impera-
tive to artificially introduce diversity, thereby reducing 
the model’s sensitivity to specific features like circular 
patterns resulting from microscope artefacts. Another 
critical strategy involves incorporating adversarial train-
ing during the model development phase. This proactive 
approach exposes the model to potential biases, promot-
ing adaptability and reducing susceptibility to artefacts. 
Regular model audits and continuous monitoring post-
deployment are essential to promptly identify and rectify 
emerging biases, guaranteeing the model’s reliability in 
real-world scenarios. Furthermore, integrating Explaina-
ble AI (XAI) techniques contributes to transparency, ena-
bling healthcare professionals to understand the model’s 
decision-making process. Collaboration with domain 
experts, particularly dermatologists and healthcare pro-
fessionals, proves invaluable. Their expertise validates 
the model’s outputs and enhances its clinical relevance 
and accuracy. Establishing feedback loops for real-world 
performance data and implementing iterative model 
improvement processes become crucial. This dynamic 
approach empowers developers to address evolving chal-
lenges and maintain the model’s effectiveness. Lastly, a 
steadfast commitment to ethical considerations, focus-
ing on fairness, equity, and patient well-being, guides AI’s 
responsible development and deployment in healthcare. 
This commitment fosters trust among users and ensures 
positive outcomes in medical applications.

Integrating feature fusion from diverse datasets, 
including Mnist-ham10000, ISIC2019, ISIC2019_2020, 
and Melanoma Skin Cancer, presents a comprehensive 
approach to enhancing the performance of risk-biased 
skin cancer classification. Combining unique features 
extracted from these varied sources gives the model 
a more nuanced understanding of skin abnormalities, 
thereby improving its ability to discern risks associated 
with different skin conditions. The Mnist-ham10000 
dataset contributes information about diverse skin types 
and conditions, while the ISIC2019 and ISIC2019_2020 
datasets offer insights into a broad spectrum of skin 
lesions. Including the Melanoma Skin Cancer dataset 
further enriches the feature set with specific details per-
taining to melanoma, a critical aspect in risk assessment. 
Through feature fusion, this amalgamation of datasets 
not only broadens the model’s knowledge base but allows 

it to adapt to the intricacies of diverse skin characteris-
tics. The summation of features from these datasets col-
lectively fortifies the risk-biased skin cancer classification 
model, fostering improved accuracy and reliability in 
identifying potential health risks across a wide range of 
skin conditions and patient demographics.

Feature fusion emerges as a potent strategy for address-
ing bias and promoting fairness within skin cancer data-
sets by incorporating diverse features, as seen in Fig. 15. 
Integrating features from various datasets, including 
Mnist-ham10000, ISIC2019, ISIC2019_2020, and Mela-
noma Skin Cancer, contributes to a more extensive and 
inclusive understanding of skin conditions. This method 
alleviates bias by exposing the model to a broader spec-
trum of skin types, lesions, and conditions, reducing 
the likelihood of favouring specific demographics. The 
potential bias from a limited dataset can be countered 
by incorporating features related to diverse skin char-
acteristics, demographic information, and lesion types 
through feature fusion. This enables the model to iden-
tify patterns across various skin types, ethnicities, and 
conditions, ensuring a more comprehensive and equita-
ble performance. As a result, the precision of skin cancer 
classification is improved, and the model’s predictions 
remain impartial and unbiased across diverse patient 
populations.

Furthermore, incorporating features from multiple 
datasets enables the model to adapt to the intricacies 
of real-world scenarios, effectively addressing concerns 
about fairness. For example, features from the Melanoma 
Skin Cancer dataset specifically focus on melanoma, 
providing vital information for accurate risk assessment 
in cases of this particular skin condition. The holistic 
perspective facilitated by feature fusion contributes to 
a more nuanced understanding of skin abnormalities, 
promoting fairness in the model’s predictions. There-
fore, feature fusion serves as a mechanism to reduce bias 
in skin cancer datasets by introducing a diverse array of 
features, fostering a more balanced and representative 
learning experience for the model. This enhances the 
model’s overall performance and ensures its predictions 
are fair, unbiased, and applicable across a broad spectrum 
of skin conditions and patient demographics.

Figure 16 shows that biases can arise in hair skin cancer 
datasets due to the challenges posed by hair. These biases 
are especially prevalent in individuals with darker skin 
tones or excessive hair. It is crucial to incorporate feature 
fusion and assimilate insights from various datasets to 
gain a more comprehensive understanding of the factors 
that influence skin health, including hair coverage.

Incorporating features linked to hair coverage 
improves the model’s ability to distinguish between 
skin abnormalities and hair patterns. This targeted 
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inclusion addresses the unique challenges of hair skin 
cancer datasets, ensuring the model is better equipped 
to navigate the complexities introduced by the pres-
ence of hair. This enhances the accuracy of skin can-
cer detection and fosters fairness by minimizing biases 
associated with hair coverage.

Furthermore, the diverse features introduced 
through feature fusion help alleviate biases tied to 
demographic factors and environmental conditions, 
fostering a more inclusive and equitable model. The 
model’s ability to adapt to a broad range of features, 
including those associated with hair, contributes to a 
fair and reliable skin cancer detection framework that 
accommodates the diverse characteristics of individu-
als, regardless of hair coverage or skin type. Feature 
fusion is a powerful tool to counter biases and enhance 
fairness in hair and skin cancer datasets by enriching 
the model’s knowledge with a comprehensive set of 
pertinent features.

Limitations and future directions
The implementation of the SWNet model for skin can-
cer detection faces several limitations that need to be 
addressed: 

1. Data Storage and Management: Handling a large set 
of high-quality or large-sized images poses significant 
challenges in terms of loading, storing, and process-
ing the data efficiently.

2. Optimization Complexity: As data size increases, 
optimizing model parameters, such as the learning 
rate and batch size, becomes increasingly complex, 
requiring meticulous fine-tuning to achieve optimal 
performance.

3. Dependency on Preprocessing Techniques: The per-
formance of the SWNet model is highly dependent 
on the effectiveness of the preprocessing techniques 
used to extract features. Limitations in these tech-

Fig. 15 Feature fusion: The first column presents the outcomes after classification, the second column highlights a biased model, and the third 
column demonstrates the results of the unbiased model
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niques can adversely affect the model’s overall perfor-
mance.

To overcome these challenges and further advance 
the capabilities of the SWNet model, several future 
research directions can be pursued: 

1. Utilization of Real-World Clinical Datasets: Future 
research should prioritize leveraging datasets from 
real-world clinical settings to better evaluate the 
model’s performance and robustness. This would 
provide valuable insights into the model’s applicabil-
ity in practical scenarios.

2. Exploration of Advanced Features and Techniques: 
Investigating additional handcrafted features or inte-
grating other deep learning techniques can further 
enhance the model’s performance. This includes 
experimenting with alternative architectures and fea-
ture extraction methods.

3. Addressing Underrepresented Classes: Developing 
more advanced techniques to improve the model’s 
performance on underrepresented classes is crucial 
for achieving balanced and accurate detection.

4. Real-Time Clinical Deployment: Developing real-
time skin cancer detection systems optimized for 
speed and efficiency, without compromising accu-
racy, would enable their deployment in clinical set-
tings, offering practical benefits to healthcare provid-
ers and patients.

5. Longitudinal Performance Evaluation: Conducting 
longitudinal studies to assess the model’s perfor-
mance over time and its ability to adapt to new data 
can provide insights into its long-term reliability and 
effectiveness in clinical practice.

Conclusions
We introduced SWNet, a novel convolutional neural net-
work designed for the automated classification of skin 
cancer into benign and malignant categories. SWNet’s 

Fig. 16 Challenges in hair-related bias
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architecture strategically enhances network width, offer-
ing significant advantages without escalating compu-
tational costs. Feature fusion was incorporated during 
model training on a public dataset, effectively addressing 
potential biases associated with skin conditions, particu-
larly in individuals with darker skin tones or excessive 
hair.

The extracted features were used to train the SoftMax 
classifier layer. To improve interpretability, we integrated 
explainable artificial intelligence (XAI) methodologies, 
specifically Grad-CAM, to identify salient features, gener-
ate interpretations of predictions, and assess the model’s 
reliability. This approach provided valuable insights into 
the decision-making process, fostered a deeper under-
standing, and enhanced confidence in the model’s outputs.

Comparative analysis with state-of-the-art networks, 
including EfficientNet, MobileNet, and Darknet, pre-
trained on the ImageNet dataset, demonstrated SWNet’s 
superiority. The model achieved an accuracy of 99.86% 
and an F1 score of 99.95%, surpassing these benchmarks. 
Furthermore, SWNet’s ability to classify normal and 
abnormal classes and its integration of feature fusion to 
mitigate biases reinforce its robustness and reliability in 
addressing diverse skin conditions.
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