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Abstract 

Background Post-induction hypotension (PIH) increases surgical complications including myocardial injury, acute 
kidney injury, delirium, stroke, prolonged hospitalization, and endangerment of the patient’s life. Machine learning 
is an effective tool to analyze large amounts of data and identify perioperative complication factors. This study aims 
to identify risk factors for PIH and develop predictive models to support anesthesia management.

Methods A dataset of 5406 patients was analyzed using machine learning methods. Logistic regression, random 
forest, XGBoost, and neural network models were compared. Model performance was evaluated using the area 
under the receiver operating characteristic curve (AUROC), calibration curves, and decision curve analysis (DCA).

Results The logistic regression model achieved an AUROC of 0.74 (95% CI: 0.71–0.77), outperforming the random 
forest (AUROC: 0.71), XGBoost (AUROC: 0.72), and neural network (AUROC: 0.72) models. In terms of calibration, 
logistic regression demonstrated superior performance, as reflected by Brier Scores and calibration curves, followed 
by XGBoost, random forest, and neural network. Decision curve analysis indicated that the logistic regression model 
provided the greatest clinical utility among all models. Baseline blood pressure, age, sex, type of surgery, platelet 
count, and certain anesthesia-inducing drugs were identified as important features.

Conclusions This study provides a valuable tool for personalized preoperative risk assessment and customized anes-
thesia management, allowing for early intervention and improved patient outcomes. Integration of machine learning 
models into electronic medical record systems can facilitate real-time risk assessment and prediction.
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Introduction
Post-induction hypotension (PIH) is a common yet 
perilous adverse effect, posing an increased risk of 
surgical complications, including myocardial injury, 
acute kidney injury, delirium, stroke, prolonged hospi-
tal stay, and jeopardizing the patient’s life [1–4]. After 
induction of anesthesia, anesthesiologists are occupied 
with tasks such as tracheal intubation, adjusting anes-
thetic drug dosage, fine-tuning ventilator settings, and 
documenting medical records, which could potentially 
lead to the oversight of PIH. Therefore, it would be 
beneficial to accurately predict the risk of PIH and its 
associated risk factors in advance.

*Correspondence:
Dingyu Zhang
2020jy0001@hust.edu.cn
1 Department of Anesthesiology, Union Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, Wuhan 430022, China
2 Department of Anesthesiology, Institute of Anesthesia and Critical Care 
Medicine, Union Hospital, Tongji Medical College, Huazhong University 
of Science and Technology, No. 1277, Jiefang Avenue, Wuhan 430022, 
China
3 Wuhan Jinyintan Hospital, Wuhan 430023, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-025-02930-y&domain=pdf


Page 2 of 9Chen and Zhang  BMC Medical Informatics and Decision Making           (2025) 25:96 

Machine learning, being potent predictive tool, 
has exhibited a broad spectrum of applications in 
the medical domain. Through comprehensive analy-
sis of extensive preoperative and intraoperative data, 
machine learning models have the capability to iden-
tify significant factors linked to the occurrence of 
perioperative complications. The seamless integration 
of machine learning models into electronic medical 
record systems holds the potential to facilitate real-
time risk assessment and prediction, thereby enhanc-
ing patient care and outcomes.

However, current models for PIH prediction often 
rely on complex machine learning algorithms and rig-
orous data collection methods, making them suscep-
tible to overfitting issues, especially when the dataset 
has limited patient samples. For instance, incorporat-
ing invasive arterial pressure data into the analysis may 
improve prediction accuracy, but such data are only 
available for high-risk patients in specific procedures 
and cannot be generalized to the broader patient pop-
ulation. Non-invasive methods like the pleth variabil-
ity index (PVI), derived from pulse oximetry, provide 
insights into fluid responsiveness but require spe-
cific pulse oximeter devices [5]. Similarly, heart rate 
variability (HRV), obtained via electrocardiograms 
(ECG), adds analytical complexity, making it less suit-
able for widespread use [6]. Ultrasonography, used to 
assess subclavian or axillary veins, offers another non-
invasive approach but depends on the availability of 
ultrasound equipment [7]. In contrast, this study lever-
ages routinely collected data from electronic medical 
records (EMRs) to predict PIH, eliminating the need 
for specialized diagnostic tools. We utilized the Vit-
alDB open dataset, which encompasses routine clinical 
data, and applied multiple machine learning meth-
ods for modeling. We evaluated the models based on 
discrimination, calibration, and clinical applicability, 
aiming to enhance their practical implementation and 
interpretability in clinical settings.

This study aims to identify risk factors for PIH and 
enhance patient outcomes through the utilization of 
machine learning models. In cases where patients 
are at a higher risk, anesthesiologists can modify the 
anesthetic protocol, implement proactive fluid man-
agement strategies, and adjust medication dosages to 
mitigate the occurrence of PIH. By leveraging these 
models, anesthesia teams are provided with a practical 
tool for personalized preoperative risk assessment and 
tailored anesthesia management.

Methods
Data source
In this study, we obtained the data from VitalDB, a pub-
licly available repository that gathered biosignal and clin-
ical information from 6388 surgical patients during their 
surgeries [8]. The data covers the period from January 
2005 to January 2014 and includes patients undergoing 
non-cardiac surgeries, such as general, thoracic, urologic, 
and gynecologic procedures. The dataset contains bio-
logical information, including blood pressure, heart rate, 
and ventilator parameters, as well as clinical information, 
such as patient age, gender, BMI, type of surgery, and 
preoperative laboratory test results. This study has been 
reported in line with the STROCCS criteria [9].

Data pre‑processing
To process the preoperative and intraoperative data, 
we applied systematic feature engineering techniques. 
Ordered categorical variables were transformed using 
label encoding to maintain their inherent order. Multicat-
egory variables were converted to binary representations 
via one-hot encoding. Continuous variables were stand-
ardized using z-scores to ensure uniform scaling across 
features. Variance filtering was conducted to exclude 
features with low variability (variance < 0.01), as these 
contribute minimally to model prediction. Correlation 
coefficient analysis was performed to remove highly cor-
related features (|r|> 0.8), thereby reducing multicollin-
earity and enhancing model interpretability.

PIH was defined as a mean arterial pressure (MAP) less 
than 55 mm Hg between the induction of anesthesia and 
the start of surgery. This threshold was based on previous 
studies that have identified a correlation between MAP 
less than 55  mm Hg and postoperative adverse events 
[4, 10, 11]. Baseline blood pressure was determined 
using the first noninvasive blood pressure measurement 
recorded upon operating room admission, prior to anes-
thesia induction. This ensures accurate baseline values 
without influence from anesthetic agents, reducing the 
risk of data leakage. To enhance data reliability, measure-
ments outside the physiological range (MAP < 20 mmHg 
or > 160 mmHg) were excluded.

Missing value processing
In our study, we employed median imputation to handle 
missing values in the dataset. This approach preserves the 
information content of the features without significantly 
reducing the sample variance, unlike mean imputa-
tion. Median imputation is not influenced by the domi-
nant group within the features and better maintains the 
expression of the features, particularly when the num-
ber of missing values is relatively small. We conducted 
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a sensitivity analysis to compare the performance of the 
model using median imputation with that of the model 
where missing values were directly removed.

Machine learning models
In our study, we employed several machine learning 
models for prediction, including logistic regression, 
random forest, XGBoost, and neural network models. 
These models are widely used in classification problems, 
each with its own unique advantages and disadvantages. 
To ensure the accuracy and stability of the models, we 
divided the dataset into training and validation sets in a 
7:3 ratio and utilized a five-fold cross-validation method. 
During the model training process, we performed grid 
search to fine-tune the model parameters, aiming to 
enhance the prediction accuracy and generalization 
capability of the models.

Model performance and evaluation
To evaluate the performance of the models, we utilized 
several evaluation metrics. The discrimination of the 
models was assessed using the area under the subject 
operating characteristic curve (AUROC). AUROC was 
chosen as the primary metric for its ability to evaluate 
model discrimination across all thresholds without being 
affected by class imbalance, a key advantage in clinical 
datasets. Other metrics, including accuracy, precision, 
recall, and F1-score, were calculated to provide a more 
nuanced performance assessment. The thresholds for all 
models were selected using the maximum Youden’s index 
to ensure a consistent approach for optimizing sensitiv-
ity and specificity. The 95% confidence intervals for per-
formance metrics were calculated using the bootstrap 
method.

Calibration performance was evaluated to assess the 
agreement between predicted probabilities and observed 
outcomes. A calibration curve was plotted by comparing 
predicted probabilities to observed event rates in deciles 
of predicted risk. A well-calibrated model should align 
closely with the diagonal reference line. Models were 
assessed using fivefold cross-validation, and compari-
sons were made based on visual inspection of calibration 
curves and Brier Scores.

To determine the clinical utility of the models, decision 
curve analysis (DCA) was performed. Net benefit is cal-
culated as follows:

where TP and FP represent true positives and false pos-
itives, N is the total sample size, and p is the threshold 
probability.

NetBenefit =
TP

N
−

FP

N
×

p

1− p

DCA evaluates the net benefit across different thresh-
old probabilities, reflecting the trade-offs between true 
positives and false positives in a clinical context. This 
metric helps in understanding the practical implications 
of implementing the predictive models in real-world clin-
ical decision-making.

By considering these evaluation metrics, we aimed to 
assess the predictive ability, stability, and applicability of 
the models. Ultimately, these assessments allowed us to 
identify the best-performing machine learning model, 
which was selected as the final predictive model.

Results
Dataset characteristics
A total of 5,406 patients were included in the study, 
of which 921 patients, accounting for 17% of the total, 
developed post-induction hypotension (Fig. 1).

We extracted 36 features from all clinical variables. 
Among these features, 13 had missing data. The percent-
age of missing data for each variable was less than 10%. 
Complete data without any missing values for all features 
were available for 88.6% of patients in the dataset.

The descriptive statistics of the clinical characteristics 
of patients with and without PIH in the dataset are pre-
sented in Table  1. Significant differences were found in 
most clinical characteristics between patients who devel-
oped PIH and those who did not. Patients who experi-
enced PIH tended to be of advanced age, female, have a 
low BMI, and exhibit low preoperative hemoglobin and 
albumin levels.

Model performance
The AUROC was 0.74 (95% CI, 0.71—0.77) for the logis-
tic regression model, 0.71 (95% CI, 0.68—0.74) for the 
random forest model, 0.72 (95% CI, 0.69—0.75) for the 
XGBoost model, and 0.72 (95% CI, 0.68—0.75) for the 
neural network model (Fig.  2). Differences between the 
four models were not statistically significant. Secondary 
metrics such as accuracy, precision, recall, and F1-score 
varied across models, with logistic regression main-
taining a balanced trade-off (Table  2). Further sensitiv-
ity analysis of the missing value treatment method did 
not reveal any significant differences in performance 
improvement among the four models.

The calibration curves demonstrated that both the 
logistic regression and random forest models exhibited 
good calibration performance, indicating that the pre-
dicted probabilities aligned well with the observed prob-
abilities. Brier Scores were as follows: logistic regression 
(0.1291), XGBoost (0.1305), random forest (0.1312), 
and neural network (0.1328). Based on Brier Scores and 
calibration curves, logistic regression displayed the best 
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calibration, followed by XGBoost, random forest, and 
neural network (Fig. 3).

Regarding the clinical benefit, the DCA curves indi-
cated that the logistic regression model provided the 
highest clinical benefit compared to the other models 
(Fig.  4). This suggests that in the clinical prediction of 
PIH, logistic regression may offer a more favorable trade-
off between reducing unnecessary interventions and 
avoiding missed diagnoses.

Considering the overall performance and interpretabil-
ity, we selected the logistic regression model as the final 
prediction model for model interpretation.

Model interpretation
The importance of features in the logistic regression 
model is determined by the absolute value of the feature 
coefficient which is intuitively interpretable. A larger 
coefficient value indicates a greater contribution of 
the feature to the model’s prediction. By examining the 
magnitude of the coefficients, we identified the 10 most 
important features in the model (Fig. 5). These significant 
features, in descending order of importance, were base-
line diastolic blood pressure, age, sex, type of surgery, 
baseline systolic blood pressure, platelet count, rocuro-
nium bromide use, urea nitrogen, albumin, and fentanyl 
use.

Discussion
This study developed a machine learning model to pre-
dict post-induction hypotension (PIH) using data from 
5406 patients. Among the models tested, the logistic 
regression model demonstrated the best performance, 
achieving an AUROC of 0.74 (95% CI, 0.71 to 0.77). In 
previous studies, traditional logistic regression algo-
rithms did not perform better than other machine learn-
ing models [12–15]. Models like XGBoost and neural 
network often outperform logistic regression in captur-
ing non-linear relationships and interactions among 
variables [12]. However, the increased computational 
demands and the need for careful hyperparameter tun-
ing may hinder its practical implementation in real-time 
clinical settings. Similarly, while random forest offers 
high predictive performance with minimal parameter 
tuning, it has been observed to be prone to overfitting 
prone to overfitting in smaller datasets or sparse data 
[15]. In this study, while logistic regression demonstrated 
comparable AUROC values to other models, its strengths 
in calibration, clinical utility and clinical applicability 
highlight its comprehensive performance. This result 
may be attributed to the class imbalance in the dataset, 
where more complex models are prone to overfitting the 
majority class, reducing their sensitivity to positive sam-
ples. Logistic regression, with its simpler structure, is 

Fig. 1 Patient recruitment flowchart
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considered the most sensitive classifier for imbalanced 
defect datasets [16], leading to more robust performance 
across metrics.

In decision curve analysis, the choice of threshold 
reflects the clinical preference for minimizing false posi-
tives versus false negatives. Given the nature of PIH, 
where overtreatment could pose unnecessary risks to 
patients and missed cases might delay timely interven-
tions, selecting thresholds that favor higher precision 
may align better with clinical priorities. Future stud-
ies could explore different threshold ranges to evaluate 
whether alternative trade-offs might yield improved pre-
dictive utility under varying clinical contexts.

The results of the model interpretation provide insights 
into the significant features contributing to the prediction 
of PIH. One of the most important features is the base-
line blood pressure, which aligns with previous research 
findings [13, 15, 17–20]. Higher baseline blood pressure 
tends to indicate a lower risk of hypotension during sur-
gery, while lower baseline blood pressure may increase 
the risk of developing hypotension. However, it has also 
been suggested that high baseline blood pressure is a 
risk factor for PIH [21, 22]. The definition of outcome in 
these two studies was based on the percentage decrease 
in blood pressure relative to baseline, which may account 
for the diametrically opposed findings. Currently, there 
is no accepted definition of PIH, with studies employ-
ing thresholds of MAP < 55  mmHg, MAP < 60  mmHg, 
or MAP < 65  mmHg [23–25]. In this study, we chose 
MAP < 55 mmHg as a stricter threshold to focus on cases 
with more severe hemodynamic changes, which are more 
likely to have significant clinical implications. While this 
approach highlights severe PIH cases, we acknowledge 
that different thresholds might influence the reported 
incidence and clinical interpretation of PIH. Addition-
ally, using baseline MBP alone to predict PIH showed an 
AUROC of 0.65, with poorer performance on calibra-
tion and DCA curves compared to comprehensive model 
(Supplementary materials).

Basic patient characteristics such as age and gender 
are found to potentially influence the occurrence of PIH. 
It is generally accepted that older patients are prone to 
PIH [6, 15, 17–19, 22], but there is controversy about 
the effect of gender [6, 12, 26]. Furthermore, labora-
tory indicators including platelet count, urea nitrogen, 
and albumin are identified as significant features. These 
indicators can reflect the patient’s hematologic status 
and renal function. While direct evidence linking these 
indicators and hypotension during anesthesia is limited, 
abnormal values in these indicators may indicate distur-
bances in metabolic status and fluid balance, which could 
contribute to the occurrence of PIH. The use of anesthe-
sia-inducing drugs affects patients’ blood pressure, and 

Table 1 Baseline characteristics of patients with and without 
post-induction hypotension

Variables PIH (N = 921) non‑PIH (N = 4485) P

Patient Characteristics

 Age, mean (SD) 58.4 (15.5) 57.1 (14.4) 0.016

Sex < 0.001

 Female 567 (61.6) 2157 (48.1)

 Male 354 (38.4) 2328 (51.9)

Heigh, cm 159.9 (10.4) 162.6 (9.1) < 0.001

Weight, kg 58.5 (11.0) 62.2 (11.7) < 0.001

BMI 22.8 (3.5) 23.5 (3.6) < 0.001

ASA PS 0.07

 I 291 (31.6) 1284 (28.6)

 II 507 (55.0) 2647 (59.0)

 III 96 (10.4) 449 (10.0)

 IV ~ VI 10 (1.1) 23 (5.1)

Department < 0.001

 General surgery 796 3487

 Gynecology 25 154

 Thoracic surgery 93 744

 Urology 7 100

EMOP 0.845

 Yes 101 482

 No 820 4003

HTN 0.013

 Yes 250 1403

 No 671 3082

DM 0.412

 Yes 88 469

 No 833 4016

Laboratory Tests

 Hemoglobin 12.6 (1.8) 12.9 (1.9) < 0.001

 Platelet 240.0 (82.4) 244.6 (83.4) 0.134

 PT 99.7 (15.7) 101.0 (14.3) 0.024

 APTT 32.7 (4.9) 32.7 (7.4) 0.803

 Na 139.9 (3.0) 140.2 (2.8) 0.004

 K 4.2 (0.4) 4.2 (0.4) 0.511

 Glucose 115.3 (43.4) 115.3 (41.8) 0.998

 Albumin 4.0 (0.5) 4.1 (0.5) < 0.001

 AST 28.5 (52.6) 29.9 (139.8) 0.771

 ALT 26.3 (56.7) 27.9 (85.4) 0.601

 BUN 15.9 (10.0) 15.6 (9.4) 0.317

 Creatinine 0.9 (1.0) 1.0 (1.4) 0.035

Baseline Blood Pressure

 SBP 136.5 (27.0) 147.7 (25.2) < 0.001

 MBP 95.2 (17.0) 104.9 (16.7) < 0.001

 DBP 71.9 (11.9) 79.8 (11.9) < 0.001

Use of anesthetic drugs

 Propofol 328 (35.6) 1794 (40.0) 0.013

 Fentanyl 146 (15.9) 937 (20.9) 0.001

 Rocuronium 912 (99.0) 4402 (98.1) 0.062

Abbreviations: PIH Post-Induction Hypotension, BMI Body mass index, ASA PS 
American Society of Anesthesiologists Physical Status, EMOP Emergency opera-
tion, HTN Hypertension, DM Diabetes, PT Prothrombin time, APTT Activated 
partial thromboplastin time, ALT Aminotransferase, AST glutamine aminotrans-
ferase, BUN Blood urea nitrogen, SBP Systolic blood pressure, MBP Mean arterial 
pressure, DBP Diastolic blood pressure
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Fig. 2 Receiver operator curves for the four machine learning models. Abbreviations: AUC, area under the curve

Table 2 Prediction performance of different machine learning models

AUROC Accuracy Precision Recall F1‑score

Logistic Regression 0.74 (0.71—0.77) 0.67 (0.64, 0.69) 0.31 (0.28, 0.35) 0.70 (0.64, 0.74) 0.43 (0.39, 0.47)

Random Forest 0.71 (0.68—0.74) 0.72 (0.70, 0.74) 0.34 (0.30, 0.38) 0.60 (0.55, 0.66) 0.44 (0.40, 0.48)

XGBoost 0.72 (0.69—0.75) 0.82 (0.80, 0.84) 0.65 (0.37, 0.91) 0.03 (0.01, 0.05) 0.06 (0.03, 0.10)

Neural Network 0.72 (0.68—0.75) 0.82 (0.81, 0.84) 0.65 (0.47, 0.83) 0.06 (0.04, 0.09) 0.11 (0.07, 0.16)

Fig. 3 Calibration curves for for the four machine learning models
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incorporating this information into the model may help 
predict the risk of PIH. Although the use of rocuronium 
has no additional clinically relevant effects on cardiovas-
cular dynamics, a transient decrease in blood pressure 
may be observed during the infusion [27, 28]. In contrast, 

fentanyl was negatively associated, likely because of its 
hemodynamic stability compared to other agents [29].

There are currently reported methods for predicting 
PIH using specialized equipment. For example, the pleth 
variability index, which is used to automatically estimate 

Fig. 4 Decision curve analysis for the four machine learning models

Fig. 5 Coefficient value of the top features for the logistic regression model
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respiratory variability, has a sensitivity of 0.79 and a 
specificity of 0.71 for predicting PIH [5]. Heart rate vari-
ability analysis has an AUROC of 0.70 [7]. In addition, a 
model trained on vital signs recorded 4 to 1 min prior to 
intubation achieves an accuracy of up to 0.72 [20]. The 
model constructed in this study uses only data routinely 
collected from electronic medical records, eliminating 
the need for specialized diagnostic equipment or profes-
sional technical personnel. Although this approach may 
compromise accuracy, it strikes a balance between prac-
ticality and precision, providing a widely applicable and 
scalable tool for clinical risk stratification.

There are some limitations to the study. The use of a 
dataset from a single institutional database may intro-
duce biases and limit the generalizability of the findings 
to other populations or healthcare settings. Second, the 
reliance on noninvasive blood pressure measurements 
rather than invasive measurements could introduce 
measurement errors and potential inaccuracies in captur-
ing blood pressure dynamics. Another limitation is the 
lack of detailed information on vasoactive drug use. The 
dataset’s limited information on the administration and 
dosing of vasoactive drugs may have affected the classi-
fication of outcome events and the predictive accuracy 
of the models. Additionally, the study mainly focused on 
preoperative features readily available in electronic medi-
cal records. While these features are easily accessible, 
not including additional intraoperative features, such as 
monitoring waveform data, intubation-related data, and 
ventilator parameters, may have limited the prediction of 
late PIH. To enhance the robustness and applicability of 
the predictive model, future studies could consider using 
multi-center datasets and incorporating more intraop-
erative features.

Conclusions
This study provides a feasible machine learning model 
for predicting PIH and an insight into risk factors for 
PIH. The developed model can serve as a basis for future 
research and clinical practice, fostering advancements in 
personalized medicine and enhancing patient safety.

Abbreviations
PIH  Post-induction hypotension
MAP  Mean arterial pressure
AUROC  Area under the subject operating characteristic curve
DCA  Decision curve analysis
SHAP  Shapley additive explanation
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