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Abstract 

The data for diagnosing spinal cord disorder (SCD) are complex and often confusing, making it difficult for established 
diagnostic techniques to yield reliable results. This issue frequently necessitates expensive testing to get an accurate 
diagnosis. However, the diagnostic process can be enhanced by integrating theoretical frameworks that resemble 
fuzzy sets, which better manage complexity and uncertainty. This integration reduces the frequency of expensive 
diagnostic procedures, improving the effectiveness of decision-making. The goal of this work is to present lower 
and upper approximations for fuzzy hypersoft sets, which employ multi-argument-based parameters to improve 
the traditional lower and upper approximations of fuzzy sets and soft sets. An intelligent mechanism for decision 
assistance is established by proposing a robust algorithm, that is based on the proposed approximations. To validate 
the proposed algorithm, a prototype case study for the clinical diagnosis of SCD is discussed. The criteria are further 
refined by using pertinent sub-criteria, such as functional ability, imaging data, and neurological status criteria. Medi-
cal professionals would find the suggested approximations to be a very helpful tool as the results indicate that they 
could greatly improve diagnosis. This study contributes to the field of medical diagnostics by providing a sophisti-
cated multi-criteria analytical tool that can manage the complexity and inherent ambiguity of SCD diagnosis.

Keywords Clinical assessment, Medical informatics, Spinal cord disorder, Multi-attribute decision-making, Rough 
approximations, Fuzzy hypersoft set

Introduction
Spinal cord disorder (SCD), a devastating and severely 
incapacitating condition, can be brought on by a vari-
ety of external factors, including traffic accidents, high-
altitude falls, physical trauma, sports injuries, and other 

traumatic events [1]. SCD causes limb dysfunction, 
including loss of motor and sensory abilities, as well as 
paralysis. Autonomic nerve dysfunction, which includes 
bowel and urine incontinence, may also be the outcome. 
Both directly and indirectly, SCD can also result in severe 
complications like central neuralgia, lower limb deep 
vein thrombosis, bedsores, lung and urinary tract infec-
tions, and limb abnormalities. As a result, those who 
have suffered from SCD and become paralyzed place a 
heavy burden on society, their families, and themselves 
because they are unable to work, require extensive medi-
cal care, and cannot afford expensive rehabilitation. The 
incidence of SCD has been estimated to be between 10.4 
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and 83 cases per million annually worldwide [2, 3]. In 
US, the incidence of SCD is 54 cases per million, with 
approximately 17,810 new cases annually [4–6]. In China, 
the situation is even more dire, with an annual incidence 
of approximately 23.7 to 60.6 cases per million [7, 8]. 
Because of the extremely limited regenerative capacity 
and irreversible damage to neuronal systems, effective 
treatments for SCD remain elusive in clinical practice 
despite tremendous advances in understanding the etiol-
ogy and secondary injury processes of the condition. One 
of the main issues with utilizing feature sets to identify 
the afflicted area of spinal cord regions in MRI images is 
the detection of SCD. Spinal cord atrophy is difficult to 
automatically identify because of changes in white mat-
ter, size, and structure. Differentiating between white and 
gray matter is crucial in determining whether spinal cord 
atrophy is detected and how severe it is. SCD repair is 
still an unsolved medical issue on a global scale. The cen-
tral nervous system is severely damaged by SCD, and it is 
extremely difficult to reverse. The complicated underlying 
pathophysiological obstacles involving the post-traumatic 
formation of cystic cavities and establishment of thick 
astrocyte scar have made long-distance axon regenera-
tion a serious issue in neuroscience [9–11]. Spinal cord 
disorder diagnosis is a complex multi-attribute decision-
making (MADM) problem because it involves evaluat-
ing multiple interdependent factors, which often contain 
inherent uncertainties and vagueness. These uncertain-
ties arise from imprecise symptom descriptions, variabil-
ity in diagnostic criteria, and limitations in medical tests. 
Theoretical frameworks, such as fuzzy set (FS) [12], soft 
set (SS) [13], fuzzy soft set (FSS) [14], hypersoft set (HSS) 
[15, 16] and fuzzy hypersoft set (FHSS) [17], have been 
developed to handle vagueness, uncertainty, and impre-
cision in complex information. These methods enable 
more accurate modeling and decision-making in uncer-
tain environments. The FHS is more adaptable than FS, 
SS, FSS, and HSS because it extends their capabilities by 
accommodating multi-attribute and sub-attribute struc-
tures within its framework. This adaptability allows it to 
model complex decision-making scenarios with greater 
precision by handling higher levels of uncertainty, vague-
ness, and granularity in data. It combines the strengths 
of its predecessors while offering enhanced flexibil-
ity for managing intricate relationships among attrib-
utes, making it highly suitable for real-world problems 
involving multidimensional and imprecise information. 
Its adaptability makes it an ideal tool for addressing the 
uncertainties inherent in medical diagnostic challenges. 
Its is worth capable to model the complex relation-
ships and variability often present in medical informa-
tion. As a result, it has been widely employed in medical 
diagnostics to provide accurate, flexible, and robust 

decision-making frameworks that improve the reliability 
of diagnoses and treatment planning in uncertain and 
dynamic healthcare environments [18–20]. The research-
ers Xiao [21, 22] and Yang et al. [23] discussed how FS-
based strategies could be applied to quantitatively model 
uncertainty and reduce the uncertainty stemming from 
subjective human cognition, thereby enhancing decision-
making. The growing availability of information through 
computer networks has made intelligent information 
processing an emotive topic in information science and 
applied research. Over the past 30 years, there has been 
a growing demand for knowledge discovery techniques 
and information analysis tools, including rule extraction 
and machine learning. As a result, a variety of informa-
tion discovery strategies have been developed. An essen-
tial mathematical tool for handling vague, inconsistent, 
and insufficient knowledge is rough set (RS), which was 
put forth by Pawlak [24–26]. The disciplines of medical 
diagnosis, pattern recognition, artificial intelligence, data 
mining, and so on have all effectively used these sets as 
a helpful tool for handling imprecise information and 
ambiguity, as noted by Pawlak and Skowron [27]. The RS 
is regarded as the set of components that either definitely 
or perhaps belong to the set, and they are related with 
two crisp sets known as the upper and lower approxima-
tions. The equivalence relation is the foundation of Paw-
lak’s RS. This produces an indiscernibility relation, which 
serves as the mathematical foundation for RS. The hybrid 
set contexts [28–33] of RST with FS have already been 
described in literature in order to deal with uncertainties, 
imperfectness, and indeterminacies.

Relevant literature and motivation
Since FHS has been proven as versatile and adaptable 
theoretical framework as compared to FSS for quantify-
ing uncertainties and vagueness, therefore, it has been 
integrated with RS to manage incompleteness as well in 
literature [34–36]. FSS along with RS plays a significant 
role in medical diagnosis as it provides a robust frame-
work for analyzing medical data by capturing the impre-
cision of symptoms, variability in patient responses, 
and the partial nature of diagnostic knowledge. This 
approach enables the classification and approximation 
of medical conditions, aiding in the accurate identifi-
cation of diseases and improving decision-making in 
complex and uncertain diagnostic scenarios. Despite 
being an excellent framework for handling uncertainty 
and imprecision, the fuzzy soft rough set has not been 
fully utilized in medical diagnosis. This limited adop-
tion may be due to a lack of awareness or complexity 
in its application. However, the contributions of schol-
ars [37–41] stand out as remarkable and commendable, 
showcasing the potential of this approach in addressing 
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complex diagnostic challenges and setting a foundation 
for future research in this promising area. Similarly, in 
the case of SCD, no substantial effort has been made 
to control the associated uncertainty. However, some 
scholars [42–44] have definitely contributed in this 
regard. After going through the available literature on 
SCD, FSS, FHS and RS, it can easily be concluded that 
the following challenges demand the development of 
novel theoretical framework: 

1. How can unclear and insufficient information related 
to SCD in particular and medical diagnoses, in gen-
eral, be handled?

2. In the context of SCD, how can vague or overlapping 
attribute or their respective values, which are com-
mon in complex decision-making scenarios, be cap-
tured?

3. How can decision-making be supported in systems 
with multiple interdependent attributes that may 
change over time?

4. How can their boundary regions be classified effec-
tively in the context of data that do not fit neatly into 
predefined categories?

This research introduces the hypersoft fuzzy rough 
set (HFRS), a novel theoretical framework designed to 
handle ambiguous, vague, and incomplete information 
more effectively than existing models. HFRS combines 
the strengths of fuzzy logic, rough sets, and hypersoft 
structures, providing a highly adaptable and generalized 
approach. In decision-making scenarios, particularly for 
complex problems like spinal cord disorders, HFRS offers 
targeted solutions to key challenges. Its fuzzy settings 
adeptly manage ambiguity, while hypersoft arrangements 
address uncertainty and complexity by considering multi-
ple parameterized factors. Furthermore, the frameworks 
modified lower and upper approximations enhance the 
accuracy and precision of modeling incomplete or incon-
sistent information, making it a robust tool for tackling 
multifaceted decision-making problems. So in the con-
text of decision-making scenarios, it can effectively han-
dle each of the aforementioned challenges. 

1. The main goal is to develop and implement a novel 
diagnostic framework that combines approximations 
based on HFRS and MADM. This framework seeks 
to effectively manage the complexity and uncer-
tainty associated with SCD diagnosis. We propose 
the incorporation of multiple diagnostic criteria into 
a comprehensive FHS to increase the accuracy and 
reliability of SCD diagnoses. This will make it possi-
ble to distinguish between various degrees of damage 
severity more successfully.

2. The approximation space of FHS is developed to 
describe the pertinent lower and upper approxima-
tions to address vagueness and incomplete infor-
mation together. To pique interest in the context, 
the suggested concept is illustrated with easily 
understood numerical examples. The concepts of 
roughness in the FHS environment have also been 
explained using the terms roughly fuzzy hyper-
soft definable, internally fuzzy hypersoft indefin-
able, externally fuzzy hypersoft indefinable, totally 
fuzzy hypersoft indefinable, fully FHS, and partition 
FHS. Additionally, some classical results have been 
modified in the context of FHS and fuzzy hypersoft 
approximation space.

3. An intelligent, decision-making system with a strong 
algorithm has been developed based on the theoreti-
cal portion of the current study. The purpose of the 
suggested algorithm is to quantify the inherent ambi-
guities, vagueness, and incompleteness to help deci-
sion-makers diagnose SCD in patients.The criteria 
(attributes and their corresponding sub-attributes) 
are estimated using the weights assigned to them, 
and the opinions of decision makers are gathered in 
the form of multiple arguments.

Four sections make up the remaining portion of the 
paper. Some helpful, necessary definitions are provided 
in the following section (“Fundamental knowledge”  sec-
tion) to help readers comprehend the key findings. The 
approximation space of FHS and the associated lower 
and upper approximations are covered in “Rough approx-
imations of FHS” section. Other pertinent ideas are also 
presented in this section. An algorithm to assess SCD 
patients using lower and upper approximations of FHS is 
developed in “Modified MADM model using FHS rough 
approximations” section, which is followed by a decisive 
system. The last section concludes the paper with future 
directions and possible limitations.

Fundamental knowledge
This section is essential for providing the foundational 
concepts, definitions, and notations necessary to under-
stand the work. It establishes a common ground for 
readers by summarizing relevant background informa-
tion and existing results, ensuring clarity and consist-
ency throughout the paper. This section also situates the 
research within its broader context and makes the article 
more accessible and self-contained, allowing readers to 
follow the new contributions without extensive reliance 
on external references.

Definition 1 Pawlak  [24, 25] Let ˆ̺ and M  = φ be an 
indiscernibility relation (equivalence relation) and a finite 
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set respectively, then 
(

M, ˆ̺
)

 is called a Pawlak approxima-
tion space (information system). If X̂ ⊆ M , it is possible 
that X̂ can be expressed as a union of certain equivalence 
classes of M, but it is also possible that it cannot. If X̂ can 
be expressed as the union of certain equivalence classes, 
then we classify X̂ as definable; otherwise, we deem it as 
not defined. If X̂ is not possible to be precisely defined, 
we can estimate it by dividing it into two subsets that can 
be precisely defined. These subsets are referred to as the 
lower and upper approximations of X̂.

Where χ̂ represents an element in M and the equiva-
lence class [χ̂ ]ℜ̂ that it belongs to as a result of the equiva-
lence relation ℜ̂.

A RS is defined as a pair 
(

ℜ̂
X̂
, ℜ̂

X̂

)

. Boundary area 

refers to the set ℜ̂
X̂
− ℜ̂

X̂
 . Obviously, if ℜ̂

X̂
= ℜ̂

X̂
 , then X̂ 

is definable.

Definition 2 Zadeh [12] Let M  = φ . A FS ÂF in M, 

where ψ(χ̂) : M −→ I is the fuzzy set’s membership 
function. The collection is symbolized by C

(

ÂF

)

.

Definition 3 Molodtsov  [13] A SS ÔS is a parameter-
ized family of all χ̂ in M. In mathematics, a set made up of 
entities 

(

ω̂, �̂
Ô

)

(

ω̂
) is SS where �̂ is approximate function 

from parameters set �̂ to the power set of M, 
�̂ : �̂ −→ PM . The approximate entity of ÔS is defined as 
(

�̂
Ô

)

(

ω̂
).

Example 1 Let M = {ζ̂1, ζ̂2, ζ̂3, ζ̂4, ζ̂5} and Ẑ = {b̂1, b̂2, b̂3, b̂4} . Let 
(�̂, Ẑ) be a SS over M which, as indicated below

�̂(b1) = {ζ̂1/1, ζ̂2/1, ζ̂3/0, ζ̂4/0, ζ̂5/0}, �̂(b2) = {ζ̂1/1, ζ̂2/0, ζ̂3/0, ζ̂4/0, ζ̂5/1},

�̂(b3) = {ζ̂1/0, ζ̂2/0, ζ̂3/1, ζ̂4/1, ζ̂5/0}, �̂(b4) = {ζ̂1/0, ζ̂2/1, ζ̂3/0, ζ̂4/1, ζ̂5/0}.

Table 1 thus represents the SS (�̂, Ẑ).

Definition 4 Smarandache [15] Let Ẑ = b̂1, b̂2, b̂3, b̂4, ..., b̂n̆  
and 2�̂ be a set of attributes and a collection of all subsets 
of �̂ , respectively. Let the sub values of every attribute 

(1)ℜ̂
X̂
=

⋃

{

[χ̂ ]
ℜ̂
: [χ̂ ]

ℜ̂
⊆ X̂

}

,

(2)ℜ̂
X̂
=

⋃

{

[χ̂ ]
ℜ̂
: [χ̂ ]

ℜ̂
∩ X̂ �= φ

}

.

(3)ÂF =
{(

χ̂ ,ψ(χ̂)
)

: ψ(χ̂) ∈ I = [0, 1]; χ̂ ∈ M
}

b̂i, i = 1, 2, 3, ..., n̆ are contained in disjoint sets �̂1 , �̂2 , �̂3 , 
..., �̂n̆ respectively. A HSS (ϒ̂ , �̂) can be stated as

where ϒ̂ : �̂ → 2�̂ is an approximated mapping and 
�̂ = �̂1 × �̂2 × �̂3 × ...× �̂n̆ with v̂i ∈ �̂ , a n̆-argument 
tuple.

Rough approximations of FHS

Definition 5 Let the sub values of every attribute 
b̂i , i = 1, 2, 3, ..., n̆ and a set of attributes Ẑ =

{

b̂1, b̂2, b̂3, ..., b̂n̆

}

 are 
contained in disjoint sets �̂1 , �̂2 , �̂3 , ..., �̂n̆ respectively such 
that �̂ = �̂1 × �̂2 × �̂3 × ...× �̂n̆ with v̂i ∈ �̂ , a n̆−argument 
tuple. Let Ŝ = (ϒ̂ , �̂) be a FHS and Ĝ = (�̂, Ŝ) be a fuzzy 
hypersoft approximation space. Based on Ĝ , the operations 
listed below can be expressed:

that allocate each M̂ ⊆ �̂ the sets 
←−−−−
�̂

Ĝ
(M̂) and 

−−−−→
�̂

Ĝ
(M̂) called 

fuzzy hypersoft Ĝ-lower and fuzzy hypersoft Ĝ-upper 
approximations of M̂ , respectively. Moreover, the set 
←−−−−
�̂

Ĝ
(M̂) is described as fuzzy hypersoft Ĝ-positive region 

[

⊞
Ĝ
(M̂)

] of M̂ , the set �̂ \
−−−−→
�̂

Ĝ
(M̂) is described as fuzzy hyper-

soft Ĝ-negative region [⊟
Ĝ
(M̂)] of M̂ , and the set 

−−−−→
�̂

Ĝ
(M̂) \

←−−−−
�̂

Ĝ
(M̂) is described as fuzzy hypersoft Ĝ-boundary 

region [⊠
Ĝ
(M̂)] of M̂ . If −−−−→�̂

Ĝ
(M̂) \

←−−−−
�̂

Ĝ
(M̂) �= φ then M̂ is called 

fuzzy hypersoft Ĝ-rough set.

In light of Definition 5, it follows that M̂ ⊆ �̂ is said 
to be fuzzy hypersoft definable if [⊠

Ĝ
(M̂)] = φ or 

−−−−→
�̂

Ĝ
(M̂) =

←−−−−
�̂

Ĝ
(M̂) . Furthermore, it’s easy to draw the con-

clusion that ←−−−−
�̂

Ĝ
(M̂) ⊆ M̂ and ←−−−−

�̂
Ĝ
(M̂) ⊆

−−−−→
�̂

Ĝ
(M̂) ∀ M̂ ⊆ �̂ . 

Regarding the tabular display of FHS Ĝ = (�̂, Ŝ) and its 

(4)(ϒ̂ , �̂) = {(v̂i, ϒ̂(v̂i)) : ϒ̂(v̂i) ⊆ �̂ ∧ v̂i ∈ �̂}

(5)
←−−−−
�̂

Ĝ
(M̂) =

{

ζ̂ ∈ �̂ : ∃ v̂ ∈ �̂,

[

ζ̂ ∈ ϒ̂(v̂) ⊆ M̂
]}

(6)

−−−−→
�̂

Ĝ
(M̂) =

{

ζ̂ ∈ �̂ : ∃ v̂ ∈ �̂,

[

ζ̂ ∈ ϒ̂(v̂) ∩ M̂ �= φ
]}

Table 1 Tabular representation of SS (�̂, Ẑ)

ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5

b̂1 1 1 0 0 0

b̂1 1 0 0 0 1

b̂1 0 0 1 1 0

b̂1 0 1 0 1 0
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approximations, for every multi-argument tuple v̂ , the 
following function can be selected.

Example 2 Let �̂ =
{

ζ̂1, ζ̂2, ζ̂3, ζ̂4, ζ̂5, ζ̂6, ζ̂7, ζ̂8

}

 , and 
Ẑ =

{

b̂1, b̂2, b̂3, b̂4

}

 . The mutually exclusive sets con-
sisting of sub values of attributes b̂i are �̂1 =

{

b̂11, b̂12

}

 , 
�̂2 = {b̂21, b̂22} , �̂3 =

{

b̂31, b̂32

}

 and �̂4 =
{

b̂41, b̂42

}

 such that 
�̂ = �̂1 × �̂2 × �̂3 × �̂4 = {v̂1 =

(

b̂11, b̂21, b̂31, b̂41

)

, v̂2 =
(

b̂11, b̂21, b̂31, b̂42

)

,

v̂3 =
(

b̂11, b̂21, b̂32, b̂41

)

, v̂4 =
(

b̂11, b̂21, b̂32, b̂42

)

, v̂5 =
(

b̂11, b̂22, b̂31, b̂41

)

,

v̂6 =
(

b̂11, b̂22, b̂31, b̂42

)

, v̂7 =
(

b̂11, b̂22, b̂32, b̂41

)

, v̂8 =
(

b̂11, b̂22, b̂32, b̂42

)

,

v̂9 =
(

b̂12, b̂21, b̂31, b̂41

)

, v̂10 =
(

b̂12, b̂21, b̂31, b̂42

)

, v̂11 =
(

b̂12, b̂21, b̂32, b̂41

)

,

v̂12 =
(

b̂12, b̂21, b̂32, b̂42

)

, v̂13 =
(

b̂12, b̂22, b̂31, b̂41

)

, v̂14 =
(

b̂12, b̂22, b̂31, b̂42

)

,

v̂15 =
(

b̂12, b̂22, b̂32, b̂41

)

, v̂16 =
(

b̂12, b̂22, b̂32, b̂42

)

} . Let V̂ = {v̂1, v̂3, v̂5, v̂6,

v̂9, v̂11, v̂14} ⊆ �̂ then the respective multi-argument 
approximate elements are ϒ̂(v̂1) = {ζ̂1, ζ̂3, ζ̂5, ζ̂7, ζ̂8} , ϒ̂(v̂3) = {ζ̂2, ζ̂4 , ζ̂6} , 
ϒ̂(v̂5) = {ζ̂1, ζ̂2, ζ̂5, ζ̂6} , ϒ̂(v̂6) = {ζ̂1, ζ̂4, ζ̂7, ζ̂8} , ϒ̂(v̂9) = {ζ̂1, ζ̂2, ζ̂4, ζ̂5, ζ̂7, ζ̂8} , 
ϒ̂( ˆv11) = {ζ̂1, ζ̂3, ζ̂4, ζ̂7, ζ̂8} , and ϒ̂( ˆv14) = {ζ̂3, ζ̂4, ζ̂5, ζ̂6, ζ̂8} . Now 
FHS Ŝ = (ϒ̂ , V̂) over �̂ is provided using Eq.  7 in 
Table  2, and fuzzy hypersoft approximation space 
Ĝ = (�̂, Ŝ) . Consider M̂ = {ζ̂1, ζ̂2, ζ̂5, ζ̂6} ⊆ �̂ . Accord-
ing to Table 3, ζ̂1, ζ̂2, ζ̂5, ζ̂6 ∈ ϒ̂(v̂5) and ϒ̂(v̂5) ⊆ M̂ , therefore, 
←−−−−
�̂

Ĝ
(M̂) = {ζ̂1, ζ̂2, ζ̂5, ζ̂6} . Similarly, according to Table  4, the 

−−−−→
�̂

Ĝ
(M̂) = {ζ̂1, x̂2, ζ̂3, ζ̂4, ζ̂5, ζ̂6, ζ̂7, ζ̂8} . Thus, ←−−−−

�̂
Ĝ
(M̂) �=

−−−−→
�̂

Ĝ
(M̂) and M̂ is 

fuzzy hypersoft Ĝ-rough set. Similarly, fuzzy hypersoft 
Ĝ-positive region of M̂ is [⊞

Ĝ
(M̂)] = {ζ̂1, ζ̂2, ζ̂5, ζ̂6} , fuzzy 

hypersoft Ĝ-negative region of M̂ is [⊟
Ĝ
(M̂)] = {ζ̂3, ζ̂4, ζ̂7, ζ̂8} 

and fuzzy hypersoft Ĝ-boundary of M̂ is 
[⊠

Ĝ
(M̂)] = {ζ̂3, ζ̂4, ζ̂7, ζ̂8} .

Definition 6 Let �̂ , Ŝ = (ϒ̂ , �̂) and Ĝ = (�̂, Ŝ) be an 
initial universe of discourse, a FHS over �̂ and fuzzy 
hypersoft approximation space respectively, then the set 
M̂ ⊆ �̂ is called a roughly fuzzy hypersoft definable if 
←−−−−
�̂

Ĝ
(M̂) �= φ and −−−−→�̂

Ĝ
(M̂) �= �̂.

(7)v̂(ζ̂ ) =

{

1 ζ̂ ∈ ϒ̂(v̂)

0 ζ̂ /∈ ϒ̂(v̂)
.

Example 3 In Example 2, if we take ϒ̂(v̂1) = {ζ̂3, ζ̂7, ζ̂8} , 
ϒ̂(v̂11) = {ζ̂3, ζ̂4, ζ̂7, ζ̂8} and ϒ̂(v̂14) = {ζ̂3, ζ̂4, ζ̂8} then we have 
←−−−−
�̂

Ĝ
(M̂) �= φ and −−−−→�̂

Ĝ
(M̂) �= �̂ . Thus, in this case, M̂ ⊆ �̂ is 

called a roughly fuzzy hypersoft definable.

The lower and upper approximations of roughly fuzzy 
hypersoft definable are presented in Table 5 and Table 6, 
respectively. 

Definition 7 Let �̂ , Ŝ = (ϒ̂ , �̂) and Ĝ = (�̂, Ŝ) be an 
initial universe of discourse, a FHS over �̂ and fuzzy 
hypersoft approximation space respectively, then the set 
M̂ ⊆ �̂ is called internally fuzzy hypersoft indefinable if 
←−−−−
�̂

Ĝ
(M̂) = φ and −−−−→�̂

Ĝ
(M̂) �= �̂.

Example 4 In Example 3, if we take ϒ̂(v̂5) = {ζ̂2, ζ̂4, ζ̂6, ζ̂8} , 
then we have ←−−−−

�̂
Ĝ
(M̂) = φ and −−−−→�̂

Ĝ
(M̂) �= �̂ . Thus, in this case, 

M̂ ⊆ �̂ is called internally fuzzy hypersoft indefinable.

The lower and upper approximations of internally 
fuzzy hypersoft indefinable are presented in Table 7 and 
Table 8, respectively. 

Definition 8 Let �̂ , Ŝ = (ϒ̂ , �̂) and Ĝ = (�̂, Ŝ) be an 
initial universe of discourse, a FHS over �̂ and fuzzy 
hypersoft approximation space respectively, then the set 
M̂ ⊆ �̂ is called a externally fuzzy hypersoft indefinable if 
←−−−−
�̂

Ĝ
(M̂) �= φ and −−−−→�̂

Ĝ
(M̂) = �̂.

Example 5 In Example 2, 
←−−−−
�̂

Ĝ
(M̂) �= φ and 

−−−−→
�̂

Ĝ
(M̂) = �̂ . 

Thus, in this case, M̂ ⊆ �̂ is called internally fuzzy hyper-
soft indefinable.

Definition 9 Let �̂ , Ŝ = (ϒ̂ , �̂) and Ĝ = (�̂, Ŝ) be an 
initial universe of discourse, a FHS over �̂ and fuzzy 
hypersoft approximation space respectively, then the 
set M̂ ⊆ �̂ is called totally fuzzy hypersoft indefinable if 
←−−−−
�̂

Ĝ
(M̂) = φ and −−−−→�̂

Ĝ
(M̂) = �̂.

Example 6 In Example 2, if we take ϒ̂(v̂5) = {ζ̂2, ζ̂4, ζ̂6, ζ̂8} , 
then we have ←−−−−

�̂
Ĝ
(M̂) = φ and −−−−→�̂

Ĝ
(M̂) = �̂ . Thus, in this case, 

M̂ ⊆ �̂ is called totally fuzzy hypersoft indefinable.

Table 2 Tabular form of FHS Ŝ

Ŝ ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7 ζ̂8

v̂1 0.9 0 0.4 0 0.5 0 0.6 0.7

v̂3 0 0.3 0 0.5 0 0.2 0 0

v̂5 0.4 0.5 0 0 0.7 0.8 0 0

v̂6 0.3 0 0 0.8 0 0 0.4 0.5

v̂9 0.3 0.1 0 0.6 0.5 0 0.8 0.9

v̂11 0.2 0 0.5 0.8 0 0 0.4 0.3

v̂14 0 0 0.7 0.5 0.8 0.3 0 0.2
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Proposition 1 and Theorem  5 (page 906), which were 
discussed by Feng et al. [45], are the results that follow, 
updated under the fuzzy hypersoft set context.

Theorem 1 Let �̂ , Ŝ = (ϒ̂ , �̂) and Ĝ = (�̂, Ŝ) be an ini-
tial universe of discourse, a FHS over �̂ and fuzzy 

hypersoft approximation space respectively, then the fol-
lowing versions of fuzzy hypersoft Ĝ-lower approximation 
←−−−−
�̂

Ĝ
(M̂) and fuzzy hypersoft Ĝ-upper approximations −−−−→�̂

Ĝ
(M̂) 

are valid for all M̂ ⊆ �̂ ←−−−−
�̂

Ĝ
(M̂) =

⋃

v̂∈V̂

{

ϒ̂(v̂) : ϒ̂(v̂) ⊆ M̂

} and 

−−−−→
�̂

Ĝ
(M̂) =

⋃

v̂∈V̂

{

ϒ̂(v̂) : ϒ̂(v̂) ∩ M̂ �= φ
}

.

Proof Definition 5 makes the proof simple to under-
stand. That can also be demonstrated and validated by 
the example that follows, though.

Example 7 It is evident from Example 2’s computations 
and underlying presumptions that only ϒ̂(v̂5) ⊆ M̂ , there-
fore, ←−−−−

�̂
Ĝ
(M̂) = ϒ̂(v̂5) = {ζ̂1, ζ̂2, ζ̂5, ζ̂6} . Since, ϒ̂(v̂1) ∩ M̂ �= φ , ϒ̂(v̂3) ∩ M̂ �= φ , 

ϒ̂(v̂5) ∩ M̂ �= φ , ϒ̂(v̂6) ∩ M̂ �= φ , ϒ̂(v̂9) ∩ M̂ �= φ , ϒ̂(v̂11) ∩ M̂ �= φ , and 
ϒ̂(v̂14) ∩ M̂ �= φ , therefore, −−−−→�̂

Ĝ
(M̂) = ϒ̂(v̂1) ∪ ϒ̂(v̂3) ∪ ϒ̂(v̂5) ∪ ϒ̂(v̂6) ∪ ϒ̂(v̂9)

∪ϒ̂(v̂11) ∪ ϒ̂(v̂14) = {ζ̂1, ζ̂2, ζ̂3, ζ̂4, ζ̂5, ζ̂6, ζ̂7, ζ̂8}.

Theorem 2 Let �̂ , Ŝ = (ϒ̂ , �̂) and Ĝ = (�̂, Ŝ) be an ini-
tial universe of discourse, a FHS over �̂ and a fuzzy hyper-
soft approximation space respectively, then the following 
results are valid for all K̂ , M̂ ⊆ �̂ : 

Table 3 Technique for figuring out the lower approximation

ζ̂i ϒ̂(v̂j) ϒ̂(v̂j) ⊆ or � M̂
←−−−−
�̂

Ĝ
(M̂)

ζ̂1 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂5) ⊆ M̂ partially yes

ζ̂2 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂9) ϒ̂(v̂5) ⊆ M̂ partially yes

ζ̂3 ϒ̂(v̂1) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂1) � M̂ No

ζ̂4 ϒ̂(v̂3) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) � M̂ No

ζ̂5 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂9) , ϒ̂(v̂14) ϒ̂(v̂5) ⊆ M̂ partially yes

ζ̂6 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂14) ϒ̂(v̂5) ⊆ M̂ partially yes

ζ̂7 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂6) � M̂ No

ζ̂8 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) � M̂ No

Table 4 Technique for figuring out the upper approximation

ζ̂i ϒ̂(v̂j) ϒ̂(v̂j) ∩ M̂ �= φ or = φ
−−−−→
�̂

Ĝ
(M̂)

ζ̂1 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , 
ϒ̂(v̂11)

ϒ̂(v̂5) ∩ M̂ �= φ partially yes

ζ̂2 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂9) ϒ̂(v̂3) ∩ M̂ �= φ partially yes

ζ̂3 ϒ̂(v̂1) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂1) ∩ M̂ �= φ partially Yes

ζ̂4 ϒ̂(v̂3) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , 
ϒ̂(v̂14)

ϒ̂(v̂14) ∩ M̂ �= φ partially Yes

ζ̂5 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂9) , ϒ̂(v̂14) ϒ̂(v̂9) ∩ M̂ �= φ partially Yes

ζ̂6 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂14) ϒ̂(v̂5) ∩ M̂ �= φ partially Yes

ζ̂7 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂6) ∩ M̂ �= φ partially Yes

ζ̂8 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , 
ϒ̂(v̂14)

ϒ̂(v̂14) ∩ M̂ �= φ partially Yes

Table 5 Lower approximation for roughly fuzzy hypersoft 
definable

ζ̂i ϒ̂(v̂j) ϒ̂(v̂j) ⊆ or � M̂
←−−−−
�̂

Ĝ
(M̂)

ζ̂1 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) �̂(v̂5) ⊆ M̂ partially Yes

ζ̂2 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂9) ϒ̂(v̂3) ⊆ M̂ partially Yes

ζ̂3 ϒ̂(v̂1) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂1) � M̂ No

ζ̂4 ϒ̂(v̂3) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) � M̂ No

ζ̂5 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂9) , ϒ̂(v̂14) ϒ̂(v̂5) ⊆ M̂ partially Yes

ζ̂6 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂14) ϒ̂(v̂5) ⊆ M̂ partially Yes

ζ̂7 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂6) � M̂ No

ζ̂8 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) � M̂ No

Table 6 Upper approximation for roughly fuzzy hypersoft 
definable

ζ̂i ϒ̂(v̂j) ϒ̂(v̂j) ∩ M̂ �= φ or = φ
−−−−→
�̂

Ĝ
(M̂)

ζ̂1 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , 
ϒ̂(v̂11)

ϒ̂(v̂5) ∩ M̂ �= φ partially Yes

ζ̂2 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂9) ϒ̂(v̂3) ∩ M̂ �= φ partially Yes

ζ̂3 ϒ̂(v̂1) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂1) ∩ M̂ = φ No

ζ̂4 ϒ̂(v̂3) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , 
ϒ̂(v̂14)

ϒ̂(v̂14) ∩ M̂ �= φ Yes

ζ̂5 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂9) , ϒ̂(v̂14) ϒ̂(v̂9) ∩ M̂ �= φ partially Yes

ζ̂6 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂14) ϒ̂(v̂5) ∩ M̂ �= φ partially Yes

ζ̂7 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂6) ∩ M̂ �= φ partially Yes

ζ̂8 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , 
ϒ̂(v̂14)

ϒ̂(v̂14) ∩ M̂ �= φ partially Yes

Table 7 Lower approximation for internally fuzzy hypersoft 
indefinable

ζ̂i �̂(v̂j) ϒ̂(v̂j) ⊆ or � M̂
←−−−−
�̂

Ĝ
(M̂)

ζ̂1 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂5) � M̂ No

ζ̂2 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂9) ϒ̂(v̂3) � M̂ No

ζ̂3 ϒ̂(v̂1) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂1) � M̂ No

ζ̂4 ϒ̂(v̂3) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) � M̂ No

ζ̂5 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂9) , ϒ̂(v̂14) ϒ̂(v̂5) � M̂ No

ζ̂6 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂14) ϒ̂(v̂5) � M̂ No

ζ̂7 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂6) � M̂ No

ζ̂8 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) � M̂ No
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1. ←−−−−�̂
Ĝ
(φ) =

−−−−→
�̂

Ĝ
(φ) = φ.

2. ←−−−−
�̂

Ĝ
(�̂) =

−−−−→
�̂

Ĝ
(�̂) =

⋃

v̂∈V̂

ϒ̂(v̂)
.

3. If K̂ ⊆ M̂ then ←−−−−�̂
Ĝ
(K̂ ) ⊆

←−−−−
�̂

Ĝ
(M̂).

4. If K̂ ⊆ M̂ then −−−−→�̂
Ĝ
(K̂ ) ⊆

−−−−→
�̂

Ĝ
(M̂).

5. ←−−−−−−−−�̂
Ĝ
(K̂ ∩ M̂) ⊆

←−−−−
�̂

Ĝ
(K̂ ) ∩

←−−−−
�̂

Ĝ
(M̂).

6. ←−−−−−−−−
�̂

Ĝ
(K̂ ∪ M̂) ⊇

←−−−−
�̂

Ĝ
(K̂ ) ∪

←−−−−
�̂

Ĝ
(M̂).

7. −−−−−−−−→�̂
Ĝ
(K̂ ∩ M̂) ⊆

−−−−→
�̂

Ĝ
(K̂ ) ∩

−−−−→
�̂

Ĝ
(M̂).

8. −−−−−−−−→�̂
Ĝ
(K̂ ∪ M̂) =

−−−−→
�̂

Ĝ
(K̂ ) ∪

−−−−→
�̂

Ĝ
(M̂).

Definition 5, Example 2, and Theorem 1 make it simple 
to demonstrate the aforementioned results. Furthermore, 
the work of Feng et al. [45] (Theorem 5, page 906) can be 
useful in this context.

Definition 10 Let Ŝ = (ϒ̂ , �̂) be a FHS over �̂ . If 
⋃

v̂∈D̂

ϒ̂(v̂) = �̂ , then Ŝ is known as fully FHS.

Definition 11 Let Ŝ = (ϒ̂ , �̂) be a FHS over �̂ . If 
{ϒ̂(v̂) : v̂ ∈ V̂ } forms a partition of �̂ , then Ŝ is known as 
partition FHS.

Modified MADM model using FHS rough 
approximations
Feng [46] used soft rough approximations to solve 
MADM problems. His method increases the accuracy of 
selecting the optimal object. This study used fuzzy hyper-
soft approximations based on Feng’s approach to detect 
spinal cord disorder.

Proposed method
Let �̂ = {ζ̂1, ζ̂2, ..., ζ̂m̆} and Ẑ be a set of alternatives and a 
set of evaluating parameters. Let �̂ be the Cartesian prod-
uct of disjoint sets consisting of sub values of parameters. 
Take V̂ = {v̂1, v̂2, ..., v̂n̆} ⊆ �̂ . Let Ŝ = (ϒ̂ , �̂) be a full FHS 
over �̂ with real representation. Let ℧̂ = {O1,O2, ...,Op̆} 

be a set of experts who are responsible to point out “the 
appropriate alternatives” using their primary evalu-
ation that are represented by Ĥi with respect to FHS 
approximation space Ĝ = (�̂, Ŝ) . Based on Ĥi for all Oi , 
an evaluation SS Ŝ1 = (ϒ̂ , ℧̂) can be constructed where 
ϒ̂ : ℧̂ → 2�̂ is a mapping given by ϒ̂(Oi) = Ĥi . The FHS 
lower approximation ←−−−−

�̂
Ĝ
(Ĥi) and FHS upper approxima-

tion −−−−→�̂
Ĝ
(Ĥi) are computed for having certainly and possibly 

optimum alternatives based of Ĥi . Using these FHS rough 
approximations, the following SSs over �̂ are obtained:

←−
Ŝ1 = (

←−
ϒ̂ , ℧̂) where ←−ϒ̂ : ℧̂ → 2�̂ is an approximate mapping 

given by ←−ϒ̂ (Oi) =
←−−−−
�̂

Ĝ
(Ĥi),

−→
Ŝ1 = (

−→
ϒ̂ , ℧̂) where −→ϒ̂ : ℧̂ → 2�̂ is an approximate mapping 

given by −→ϒ̂ (Oi) =
−−−−→
�̂

Ĝ
(Ĥi).

It is noteworthy that FSs could also be used to indicate 
the evaluation result for the complete expert set ℧̂ . Let 
�̂M̂ represents the characteristic function M̂ ⊆ �̂ . Using 
SS Ŝ1 = (ϒ̂ , ℧̂) , we can construct the following FSs in �̂:
χ
Ŝ1

: �̂ → [0, 1] defined by

χ←−
Ŝ1

: �̂ → [0, 1] defined by

χ−→
Ŝ1

: �̂ → [0, 1] defined by

where ϒ̂(Ôi) = Ĥi , 
←−
ϒ̂ (Ôi) =

←−−−−
�̂

Ĝ
(Ĥi) , 

−→
ϒ̂ (Ôi) =

−−−−→
�̂

Ĝ
(Ĥi) 

and j = 1, 2, ...,m.
Now, based on above FSs, construct fuzzy SS (�̂, L̂) 

characterized by mapping �̂ : F̂ → L�̂ defined by 
�̂(LC) = χ−→

Ŝ1

 , �̂(MC) = χ
Ŝ1

 and �̂(HC) = χ←−
Ŝ1

 , where L�̂ 

(8)ζ
Ŝ1
(ζ̂j) =

(

1

p̆

) p̆
∑

i=1

�
ϒ̂(Ôi)

(

ζ̂j

)

,

(9)χ←−
Ŝ1

(ζ̂j) =

(

1

p̆

) p̆
∑

i=1

�←−
ϒ̂ (Ôi)

(

ζ̂j

)

,

(10)ζ−→
Ŝ1

(ζ̂j) =

(

1

p̆

) p̆
∑

i=1

�−→
ϒ̂ (Ôi)

(

ζ̂j

)

,

Table 8 Upper approximation for internally fuzzy hypersoft indefinable

ζ̂i ϒ̂(v̂j) ϒ̂(v̂j) ∩ M̂ �= φ or = φ
−−−−→
�̂

Ĝ
(M̂)

ζ̂1 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂5) ∩ M̂ �= φ partially Yes

ζ̂2 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂9) ϒ̂(v̂3) ∩ M̂ �= φ partially Yes

ζ̂3 ϒ̂(v̂1) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂1) ∩ M̂ = φ No

ζ̂4 ϒ̂(v̂3) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) ∩ M̂ �= φ partially Yes

ζ̂5 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂9) , ϒ̂(v̂14) ϒ̂(v̂9) ∩ M̂ �= φ partially Yes

ζ̂6 ϒ̂(v̂3) , ϒ̂(v̂5) , ϒ̂(v̂14) ϒ̂(v̂5) ∩ M̂ �= φ partially Yes

ζ̂7 ϒ̂(v̂1) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) ϒ̂(v̂6) ∩ M̂ �= φ partially Yes

ζ̂8 ϒ̂(v̂1) , ϒ̂(v̂5) , ϒ̂(v̂6) , ϒ̂(v̂9) , ϒ̂(v̂11) , ϒ̂(v̂14) ϒ̂(v̂14) ∩ M̂ �= φ partially Yes
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is the collection of fuzzy subsets over �̂ , F̂  is the collec-
tion of elements categorized as low confidence (LC), 
medium confidence (MC) and high confidence (HC). 
Now calculate weighted evaluation values ϒ̂(ζ̂j) of alter-
natives ζ̂j using the following formula:

where η̂LC , η̂MC , and η̂HC are weights such that 
η̂LC + η̂MC + η̂HC = 1 . Finally, the alternative ζ̂j with 
maximum weighted evaluation value ϒ̂(ζ̂j) , is selected.

Based on the above-discussed MADM system, a robust 
algorithm is proposed as

Algorithm 1 Decision assisted system based on rough approximation 
of FHS

 

  The flowchart of the proposed algorithm is presented  
in Fig. 1.

Mechanism for obtaining raw data
The parameters and their corresponding sub-parametric 
values play a crucial role in shaping the decisions and 
outcomes. Parameters specify the main criteria or ele-
ments that influence choices. Sub-parametric values 
offer a higher degree of specificity, making it possible 
to evaluate each parameter precisely. Decision-makers 
can evaluate options, analyze trade-offs, and prioritize 

(11)
ϒ̂(ζ̂j) = η̂LC × �̂(LC)(ζ̂j)+ η̂MC × �̂(MC)(ζ̂j)+ η̂HC × �̂(HC)(ζ̂j)

actions that forward strategic objectives by carefully 
examining these values. This meticulous process guar-
antees that choices are transparent, data-driven, and 
tailored to yield the best outcomes. The criteria (param-
eters) and sub-criteria (sub parametric values) as shown 
in Table  9, Figs.  2,  3,  4, and  5 are adopted with partial 
modification in this study in accordance with the find-
ings of the researchers’ investigation [47–51] in the 
framework of MADM. Similar to this, selecting a col-
lection of alternatives is a crucial first step when deal-
ing with a decision-making challenge since it gives us a 
variety of options to consider and contrast, promoting 
in-depth examination. This method makes it easier to 
find the most workable answer, leading to fair and well-
informed decision-making.

Only three main criteria (attributes) the neurological 
status criteria, imaging data criteria, and functional abili-
ties criteria have been chosen for the evaluation of SCD 
patients in Table 9, despite the fact that there are numer-
ous criteria in the literature to diagnose the disease. This 
is because they have enough subattribute values to meet 
the demands of the FHS environment.

Hypothetical case study
After falling from a considerable height, a 35-year-old man 
experienced acute back pain and partial loss of movement 
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in his lower limbs. He then went to the emergency depart-
ment. A SCD with diminished motor and sensory function 
below the T10 vertebral level was shown by the prelimi-
nary neurological evaluation. An MRI and CT scan, among 
other imaging tests, verified a fracture at the T10 vertebra 

with compression of the spinal cord. Regarding the degree 
of nerve injury and possible healing prospects, uncertainty 
remained despite conventional diagnostic techniques. A 
MADM system that makes use of rough approximations 
of fuzzy hypersoft set was used to address issue. In order 

Fig. 1 Flowchart of proposed algorithm

Table 9 Adopted parameters and their respective sub parametric values

Parameters Sub parametric values

b̂1 = Neurological Status Criteria b̂11 = Motor function, b̂12 = Sensory function, b̂13 = Reflexe, b̂14 = Autonomic function, b̂15 = Level of injury

b̂2 = Imaging Data Criteria b̂21 = Magnetic resonance imaging (MRI), b̂22 = computed tomography (CT) scan, b̂23 = X-ray, b̂24 = Diffu-
sion tensor imaging (DTI), b̂25 = Ultrasound

b̂3 = Functional Abilities Criteria b̂31 = Activities of daily living (ADL), b̂32 = Mobility, b̂33 = Upper limb function, b̂34 = Respiratory function, 
b̂35 = Quality of life (QoL) assessments
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to offer a thorough assessment, this method included neu-
rological status, imaging data, and functional ability crite-
ria. Over a six-month period, the patient’s motor function 

and overall quality of life significantly improved as a result 
of the customized treatment plan the model recommended, 
which involved heavy rehabilitation after surgery. The 
management of complex SCD is made easier by the use of 
advanced diagnostic frameworks, which are especially use-
ful when dealing with complex and ambiguous clinical data. 
A committee consisting of three specialists Ô1 , Ô2 , and Ô3 is 
formed to guarantee that the study is thorough and knowl-
edgeable. These experts contribute knowledge from a vari-
ety of fields related to SCD, including neurology, radiology, 
and rehabilitation medicine. Their responsibilities include 
evaluating the available options, offering advice based on 
their clinical background, and directing the study’s decision-
making process. The utilization of a collaborative strategy 
guarantees that the study takes into account various view-
points and that the selected alternatives undergo thorough 
evaluation, resulting in conclusions that are more depend-
able and relevant. As per the committee, potential injuries 

are ζ̂1 = complete SCD, ζ̂2 = incomplete SCD, ζ̂3 = cervical 
SCD, ζ̂4 = thoracic SCD, ζ̂5 = lumbar SCD, ζ̂6 = sacral SCD, 
ζ̂7 = central cord syndrome. These injuries make up a set of 

Fig. 2 Major criteria for SCD

Fig. 3 Sub-criteria of neurological status criteria

Fig. 4 Sub-criteria of imaging data criteria

Fig. 5 Sub-criteria of functional abilities criteria
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parameters �̂ = {ζ̂1, ζ̂2, ζ̂3, ζ̂4, ζ̂5, ζ̂6, ζ̂7} . After experts con-
fer with one another, the parameters selected for assessment 
are b̂1 = neurological status criteria, b̂2 = imaging data 
criteria, and b̂3 = functional abilities criteria. These attrib-
utes make up the set Ẑ = {b̂1, b̂2, b̂3} . The sub parametric 
values of the parameters are included in the sets based on 
a preferential basis. �̂1 = {b̂11, b̂12} , �̂2 = {b̂21, b̂22} , and 
�̂3 = {b̂31, b̂32} respectively. Table 9 presents the sub para-
metric values in detail. In order to obtain multi-argument 
tuples, �̂ = �̂1 × �̂2 × �̂3 is calculated with the components 
v̂1 = (b̂11, b̂21, b̂31) , v̂2 = (b̂11, b̂21, b̂32) , v̂3 = (b̂11, b̂22, b̂31) , v̂4 = (b̂11, b̂22, b̂32) , 
v̂5 = (b̂12, b̂21, b̂31) , v̂6 = (b̂12, b̂21, b̂32) , v̂7 = (b̂12, b̂22, b̂31) , and 
v̂8 = (b̂12, b̂22, b̂32) . Take V̂ = {v̂2, v̂4, v̂6, v̂8} ⊆ �̂ for additional 
assessment, giving precedence to b̂32 in �̂3 . Using Eq.  7, 
a full FHS Ŝ = (ϒ̂ , �̂) is built over �̂ with accurate tabular 
representation (see Table 10). The FHS Ŝ is built utilizing the 
approximations ϒ̂(v̂2) = {ζ̂5, ζ̂7} , ϒ̂(v̂4) = {ζ̂1, ζ̂4, ζ̂6, ζ̂7} , 
ϒ̂(v̂6) = {ζ̂1, ζ̂3} and ϒ̂(v̂8) = {ζ̂2, ζ̂4} . Currently, primary 
assessments Ĥi from experts are gathered to evaluate spi-
nal cord disorder damage. Based on Ĥi , an evaluation SS 
Ŝ1 = (ϒ̂ , ℧̂) is constructed with ϒ̂ : ℧̂ → 2�̂ such that 
ϒ̂(Oi) = Ĥi . Table 11 presents them and demonstrates that 
Ĥ1 = {ζ̂4, ζ̂5, ζ̂7} , Ĥ2 = {ζ̂1, ζ̂3, ζ̂7} , and Ĥ3 = {ζ̂2, ζ̂4, ζ̂5}.

Now FHS lower approximations ←−−−−
�̂

Ĝ
(Ĥi) and FHS upper 

approximations −−−−→�̂
Ĝ
(Ĥi) are calculated for every Ĥi.

←−
ϒ̂ (O1) =

←−−−−−
�̂

Ĝ
(Ĥ1) = ϒ̂(v̂2) = {ζ̂5, ζ̂7} , 

←−
ϒ̂ (O2) =

←−−−−−
�̂

Ĝ
(Ĥ2) = ϒ̂(v̂6) = {ζ̂1, ζ̂3},

←−
ϒ̂ (O3) =

←−−−−−
�̂

Ĝ
(Ĥ3) = ϒ̂(v̂8) = {ζ̂2, ζ̂4},

−→
ϒ̂ (O1) =

−−−−−→
�̂

Ĝ
(Ĥ1) = ϒ̂(v̂2) ∪ ϒ̂(v̂4) ∪ ϒ̂(v̂8) = {ζ̂1, ζ̂2, ζ̂4 , ζ̂5, ζ̂6, ζ̂7} = �̂ \ {ζ̂3},

−→
ϒ̂ (O2) =

−−−−−→
�̂

Ĝ
(Ĥ2) = ϒ̂(v̂2) ∪ ϒ̂(v̂4) ∪ ϒ̂(v̂6) = {ζ̂1, ζ̂3, ζ̂4 , ζ̂5, ζ̂6, ζ̂7} = �̂ \ {ζ̂2},

−→
ϒ̂ (O3) =

−−−−−→
�̂

Ĝ
(Ĥ3) = ϒ̂(v̂2) ∪ ϒ̂(v̂4) ∪ ϒ̂(v̂8) = {ζ̂1, ζ̂2, ζ̂4 , ζ̂5, ζ̂6, ζ̂7} = �̂ \ {ζ̂3}.

Thus, with these FHS approximations, two SSs 
←−
Ŝ1 = (

←−
ϒ̂ , ℧̂) and −→Ŝ1 = (

−→
ϒ̂ , ℧̂) are constructed that are tabulated 

in Tables 12 and 13 respectively.

Currently, three FSs χ
Ŝ1
,χ←−

Ŝ1

,χ−→
Ŝ1

: �̂ → [0, 1] are deter-

mined by using Eqs. 8, 9, and 10 and their values are calcu-
lated as

χ
Ŝ1

= {(ζ̂1,
1
3
), (ζ̂2,

1
3
), (ζ̂3,

1
3
), (ζ̂4 ,

2
3
), (ζ̂5,

2
3
), (ζ̂6, 0), (ζ̂7,

2
3
)},

χ←−
Ŝ1

= {(ζ̂1,
1
3
), (ζ̂2,

1
3
), (ζ̂3,

1
3
), (ζ̂4 ,

1
3
), (ζ̂5,

1
3
), (ζ̂6, 0), (ζ̂7,

1
3
)}, 

χ−→
Ŝ1

= {(ζ̂1, 1), (ζ̂2,
2
3
), (ζ̂3,

1
3
), (ζ̂4 , 1), (ζ̂5, 1), (ζ̂6, 1), (ζ̂7, 1)}

.
A fuzzy SS (�̂, F̂) is constructed with �̂ : F̂ → L

�̂ defined by 
�̂(LC) = χ−→

Ŝ1

 , �̂(MC) = χ
Ŝ1

 and �̂(HC) = χ←−
Ŝ1

 . Now assign 

weights η̂χ−→
Ŝ1

= 0.4214 , η̂χ
Ŝ1

= 0.3234 , and η̂χ←−
Ŝ1

= 0.2552 . 

Using Eq.  11, weighted evaluation values for all ζ̂j are 
computed as

ϒ̂(ζ̂1) = 0.4214 × �̂(LC)(ζ̂1)+ 0.3234 × �̂(MC)(ζ̂1)+ 0.2552× �̂(HC)(ζ̂1) = 0.5998,
ϒ̂(ζ̂2) = 0.4214 × �̂(LC)(ζ̂2)+ 0.3234 × �̂(MC)(ζ̂2)+ 0.2552× �̂(HC)(ζ̂2)

= 0.4593333,
ϒ̂(ζ̂3) = 0.4214 × �̂(LC)(ζ̂3)+ 0.3234 × �̂(MC)(ζ̂3)+ 0.2552× �̂(HC)(ζ̂3)

= 0.3188667,
ϒ̂(ζ̂4) = 0.4214 × �̂(LC)(ζ̂4)+ 0.3234 × �̂(MC)(ζ̂4)+ 0.2552× �̂(HC)(ζ̂4)

= 0.7075,
ϒ̂(ζ̂5) = 0.4214 × �̂(LC)(ζ̂5)+ 0.3234 × �̂(MC)(ζ̂5)+ 0.2552× �̂(HC)(ζ̂5)

= 0.8489,
ϒ̂(ζ̂6) = 0.4214 × �̂(LC)(ζ̂6)+ 0.3234 × �̂(MC)(ζ̂6)+ 0.2552× �̂(HC)(ζ̂6)

= 0.4214,
ϒ̂(ζ̂7) = 0.4214 × �̂(LC)(ζ̂7)+ 0.3234 × �̂(MC)(ζ̂7)+ 0.2552× �̂(HC)(ζ̂7)

= 0.7075.
Therefore, the spinal cord disorder are ranked 

as follows based on weighted evaluation values 
ζ̂5 > ζ̂7 = ζ̂4 > ζ̂1 > ζ̂2 > ζ̂6 > ζ̂3 this indicates that, 
nationwide, lumbar SCD is the most common kind of 
SCD.

Comparison and discussion
To improve the accuracy and consistency of the results, 
multi-argument approximation functions, and sub-
parametric values must be considered when making 

Table 10 Real description of FHS Ŝ in tabular form

Ŝ ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7

v̂2 0 0 0 0 0.7 0 0.5

v̂4 0.3 0 0 0.5 0 0.7 0.9

v̂6 0.2 0 0.4 0 0 0 0

v̂8 0 0.6 0 0.8 0 0 0

Table 11 Tabular representation of Ŝ1

Ŝ ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7 Ĥi

Ô1
0 0 0 0.2 0.4 0 0.4 Ĥ1

Ô2
0.3 0 0.5 0 0 0 0.7 Ĥ2

Ô3
0 0.1 0 0.3 0.8 0 0 Ĥ3
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decisions. A more comprehensive analysis is made pos-
sible by sub-parametric values, which draw attention to 
subtle differences within each parameter that might go 
unnoticed if only large classes were considered. This sys-
tematic methodology facilitates the identification of min-
ute patterns and trends that may significantly influence 
the decision-making process. However, multi-argument 
approximate functions provide a more systematic and 
accurate representation of the situation at hand by mak-
ing it simpler to quantify elusive correlations between 
multiple parameters. By approximating these correla-
tions, decision-makers can foresee outcomes, optimize 
solutions, and account for uncertainty more precisely. 
Combining these methods ensures a more thorough and 
precise examination, leading to more insightful and prac-
tical judgments. The hypersoft fuzzy rough technique is 
used in the suggested study, which improves the group’s 
overall expert primary evaluation findings. The facilita-
tion that was covered before in this part is provided by 
its hypersoft fuzzy setting. This results in a more depend-
able choice of the ideal object. The lower and upper 
approximations are useful ways to deal with uncertainty 
and imprecision in data processing in rough set theory. 
The lower approximation, which displays the set of items 
contained in a concept based on available data, ensures 
strong certainty in classification. Conversely, the upper 
approximation accounts for all plausible conceptual ele-
ments while accounting for potential ambiguity. There-
fore, the objects that certain experts in the primary 
evaluation mistakenly chose as the optimal objects can 
be removed using the hypersoft fuzzy lower approxima-
tion, and the optimal objects that some experts in the 

evaluation might have missed can be added using the 
hypersoft fuzzy upper approximation. As a result, even 
though the evaluation soft set in the proposed model 
considers and characterizes the subjectivity of decision-
making, the use of hypersoft fuzzy rough sets may, under 
some circumstances, automatically reduce the errors 
resulting from the subjectivity of the evaluation that 
experts provide. In recent years, a new approach to com-
parison has emerged in the literature, aimed at evaluat-
ing the flexibility and reliability of theoretical structures 
in relation to existing frameworks. This type of compari-
son is particularly useful when no directly comparable 
work exists in the current body of literature. It typically 
relies on significant criteria or factors to assess the theo-
retical structure’s robustness, practical applicability, and 
novelty, providing a systematic way to benchmark its 
performance or effectiveness against relevant standards 
or paradigms. The same case is for this study, therefore, 
structural comparison is presented in Table  14 which 
clearly depicts the flexibility of the proposed framework.

The significant advantages of the proposed framework 
are outlined as: 

1. It provides flexible fuzzy set arrangements to handle 
unclear and insufficient information related to SCD 
in particular and medical diagnoses, in general.

2. In the context of SCD, it employs hypersoft settings 
to capture vague or overlapping attribute or their 
respective values, which are common in complex 
decision-making scenarios. Moreover, its modified 
multi-argument based approximate mapping can 
support decision-making in systems with multiple 

Table 12 Tabular representation for lower approximations of Ŝ1

Ŝ ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7
←−
ϒ̂ (Oi)

Ô1
0 0 0 0 o.3 0 0.8 ←−

ϒ̂ (O1)

Ô2
0.2 0 0.5 0 0 0 0 ←−

ϒ̂ (O2)

Ô3
0 0.5 0 0.8 0 0 0 ←−

ϒ̂ (O3)

Table 13 Tabular representation for upper approximations of Ŝ1

Ŝ ζ̂1 ζ̂2 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7
−→
ϒ̂ (Oi)

Ô1
0.9 0.3 0 0.6 0.4 0.2 0.5 −→

ϒ̂ (O1)

Ô2
0.2 0 0.7 0.4 0.8 0.1 0.6 −→

ϒ̂ (O2)

Ô3
0.7 0.3 0 0.4 0.6 0.2 0.5 −→

ϒ̂ (O3)
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interdependent attributes that may change over time. 
In this way, it yields reliable and unbiased quick deci-
sions.

3. Its modified lower and upper approximations can 
classify boundary regions effectively in the context 
of data that do not fit neatly into predefined catego-
ries. The lower approximation ensures a precise rep-
resentation of elements that unequivocally belong to 
the set, enhancing reliability in uncertain contexts. 
In contrast, the upper approximation includes ele-
ments with partial or potential membership, captur-
ing the nuances of borderline cases. This dual-layered 
approach allows for a comprehensive analysis of 
ambiguous data, ensuring adaptability and improved 
accuracy in scenarios involving imprecise, incom-
plete, or conflicting information.

Conclusion
Accurately diagnosing spinal cord disorder (SCD) is still 
very challenging because the facts surrounding the con-
dition are complex and often obscure. Conventional diag-
nostic methods frequently fall short, requiring expensive 
and extensive testing. The integration of sophisticated 
frameworks such as machine learning, data mining, and 
MADM is one potential method to increase DM and 
diagnostic efficiency. In order to successfully address the 
complexity of SCD diagnosis, this research introduces a 
unique method using HFRS, which blends RS and FS the-
ories. Case studies show how this framework can greatly 
increase the precision of diagnosis and planning of treat-
ment. According to the results, medical practitioners may 
profit substantially from using HFRS in SCD diagnosis as 
it provides a reliable instrument for managing complexity 
and uncertainty in medical data. In addition to improv-
ing the field of medical diagnostics, this strategy may find 
wider use in other areas where MADM under uncer-
tainty is necessary. Due to their potential complexity and 

processing overhead, multi-argument-based parameters 
in FHS are the study’s main limitations. These parame-
ters may hinder real-time applications, particularly when 
dealing with large datasets. The algorithm’s robustness 
may also be questioned in cases where the criteria or 
sub-criteria are ambiguous or overlap. Future research 
could explore the extension of FHS to address other com-
plex medical conditions beyond SCD, enabling broader 
applicability in healthcare diagnostics. Additionally, the 
integration of machine learning techniques with the 
proposed framework could enhance its adaptability and 
precision in handling large-scale medical data. Investi-
gating the real-time implementation of the algorithm in 
clinical settings and integrating it with advanced imaging 
technologies and electronic health records could further 
improve diagnostic accuracy and decision-making effi-
ciency. Finally, a comparative analysis with alternative 
intelligent diagnostic systems could validate and refine 
the proposed approach, establishing its place as a bench-
mark in medical decision support systems.
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