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Abstract
Background  Retinal vein occlusion (RVO) is a leading cause of vision loss globally. Routine health check-up data—
including demographic information, medical history, and laboratory test results—are commonly utilized in clinical 
settings for disease risk assessment. This study aimed to develop a machine learning model to predict RVO risk in the 
general population using such tabular health data, without requiring coding expertise or retinal imaging.

Methods  We utilized data from the Korea National Health and Nutrition Examination Surveys (KNHANES) collected 
between 2017 and 2020 to develop the RVO prediction model, with external validation performed using independent 
data from KNHANES 2021. Model construction was conducted using Orange Data Mining, an open-source, code-free, 
component-based tool with a user-friendly interface, and Google Vertex AI. An easy-to-use oversampling function 
was employed to address class imbalance, enhancing the usability of the workflow. Various machine learning 
algorithms were trained by incorporating all features from the health check-up data in the development set. The 
primary outcome was the area under the receiver operating characteristic curve (AUC) for identifying RVO.

Results  All machine learning training was completed without the need for coding experience. An artificial neural 
network (ANN) with a ReLU activation function, developed using Orange Data Mining, demonstrated superior 
performance, achieving an AUC of 0.856 (95% confidence interval [CI], 0.835–0.875) in internal validation and 0.784 
(95% CI, 0.763–0.803) in external validation. The ANN outperformed logistic regression and Google Vertex AI models, 
though differences were not statistically significant in internal validation. In external validation, the ANN showed a 
marginally significant improvement over logistic regression (P = 0.044), with no significant difference compared to 
Google Vertex AI. Key predictive variables included age, household income, and blood pressure-related factors.

Conclusion  This study demonstrates the feasibility of developing an accessible, cost-effective RVO risk prediction 
tool using health check-up data and no-code machine learning platforms. Such a tool has the potential to enhance 
early detection and preventive strategies in general healthcare settings, thereby improving patient outcomes.
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Background
Retinal vein occlusion (RVO) is a major critical health-
care issue involving vision loss [1]. RVO is a disease in 
which vision complications occur due to blockage of 
the central or branch retinal veins by a thrombus or sig-
nificant narrowing of retinal veins at the arteriovenous 
crossing site. Ischemia following RVO can induce macu-
lar edema and neovascular complications such as hem-
orrhage, retinal fibrosis, and secondary glaucoma. The 
prevalence of RVO has been around 0.5–0.7% in adult 
populations [2, 3]. Because RVO is a vascular complica-
tion, it is closely associated with chronic systematic dis-
eases, including hypertension, diabetes, atherosclerosis, 
and other cardiovascular diseases [4]. Therefore, by com-
bining information related to multiple vascular diseases, 
it will be possible to predict and prevent the risk of RVO.

Currently, retinal vein occlusion (RVO) is typically 
detected through fundus photography or other retinal 
imaging techniques. However, routine health check-ups 
often include laboratory tests that assess risk factors 
associated with RVO, such as blood pressure and cho-
lesterol levels. These tests are advantageous as cardio-
vascular disease biomarkers due to their low cost and 
consistency [5]. Although regular health check-ups with 
medical history questionnaires and laboratory examina-
tions can potentially be RVO biomarkers, a single calcu-
lation or test has not been established to predict RVO. 
Recent advancements in machine learning have demon-
strated the capability to integrate diverse data sources 
for improved diagnostic performance without fundus 
photography [6]. For instance, this technology has been 
applied to algorithms predicting diabetic retinopathy 
without taking fundus photographs [7].

Although evidence has been reported on various risk 
factors for RVO, previous studies primarily focused on 
image-based approaches such as using optical coherence 
tomography (OCT) images to predict RVO [8, 9]. In con-
trast, our study uniquely integrates demographic, medi-
cal history, and laboratory test data in a tabular format 
to develop a risk prediction model. This approach enables 
a broader application of machine learning techniques in 
clinical settings without requiring imaging data, mak-
ing it more accessible and cost-effective. Many medical 
researchers face challenges in learning and implementing 
coding skills to develop machine learning models inde-
pendently [10]. While data availability has been a barrier 
to entry, risk prediction remains particularly challenging 
for diseases with low prevalence, such as RVO. Recently, 
no-code tools for machine learning development, such as 
Google Vertex AI and Orange Data Mining, have been 
introduced, enabling researchers to create predictive 

models without requiring programming expertise [11]. 
These platforms empower medical researchers to utilize 
readily available data to develop models for various dis-
eases with minimal technical barriers [12]. Furthermore, 
biases in data stemming from differences in country, 
center, and race highlight the importance of designing 
individualized and customized machine learning models 
[13]. To address these challenges, creating an environ-
ment where machine learning models can be developed 
easily and without coding is essential for advancing pre-
dictive healthcare and enabling widespread adoption of 
these tools.

The research gap for machine learning studies to pre-
dict RVO can be summarized as follows: Prior studies 
predominantly focus on imaging data, such as fundus 
photographs or OCT scans, which require specialized 
equipment and expertise, limiting their applicability in 
settings lacking access to such tools [14]. Additionally, 
while health check-up data—encompassing demograph-
ics, medical history, and laboratory results—are widely 
available [15], their potential use in machine learn-
ing models for RVO prediction remains underexplored. 
Another significant barrier is the reliance on program-
ming skills for developing machine learning models, 
which restricts accessibility for many medical research-
ers and clinicians [10, 12], highlighting the need for 
user-friendly, no-code platforms. Furthermore, the low 
prevalence of RVO presents challenges in addressing 
imbalanced datasets, which many existing studies fail to 
overcome, leading to suboptimal predictive performance. 
Lastly, most current models are based on small, homoge-
nous datasets, raising concerns about their generalizabil-
ity to larger and more diverse populations.

Our study aimed to create a machine learning model 
that can identify the risk of RVO in a general population 
using health check-up data. This data includes demo-
graphic data, medical history, and laboratory tests. To 
select high-risk patients to receive fundus examination or 
who should control their systemic risk factors, we used 
traditional risk factors and clinical laboratory examina-
tions without fundus examination to predict RVO. We 
attempted to develop RVO risk prediction models using 
general healthcare data in a large population-based data-
set with more than 14,000 participants. The key contribu-
tions of this study are as follows:

 	• Development of a Machine Learning Model for RVO: 
We developed a machine learning model using user-
friendly, code-free platforms (Orange Data Mining 
and Google Vertex AI), enabling medical researchers 
without coding experience to create accurate 
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predictive models. Notably, this is the first study 
to predict the risk of RVO using routine screening 
data without the need for imaging. Additionally, 
we introduced an easily accessible oversampling 
function that does not require additional coding, 
enhancing the usability of the workflow.

 	• Application to a Large, Nationwide Dataset: The 
study utilized health check-up data, including 
demographics, medical history, and laboratory 
results, demonstrating the feasibility of predicting 
RVO risk without imaging data. The study 
employed data from the Korea National Health and 
Nutrition Examination Surveys (KNHANES), with 
a development dataset of over 12,000 participants 
and an independent external validation set, ensuring 
robustness and generalizability.

 	• Comparison of No-Code Platforms: This study 
compared the performance of two no-code 
platforms, highlighting their strengths and 
limitations for clinical applications. By eliminating 
the need for coding or specialized imaging 
equipment, this approach provides a low-cost, 
accessible tool for identifying high-risk individuals in 
general healthcare settings.

Methods
Study design and participants
This study developed machine learning prediction mod-
els for RVO risk using medical history and laboratory 
examination data (Fig. 1). This study used data from the 

Korea National Health and Nutrition Examination Sur-
veys (KNHANES) conducted between 2017 and 2021. 
The KNHANES is a nationwide cross-sectional study 
conducted by the Korea Disease Control and Preven-
tion Agency (KDCA). The data collection protocol was 
approved by the Institutional Review Board (IRB) of the 
KDCA, and the dataset is publicly available for research 
purposes (link: ​h​t​t​p​​s​:​/​​/​k​n​h​​a​n​​e​s​.​​k​d​c​​a​.​g​o​​.​k​​r​/​k​​n​h​a​​n​e​s​/​​e​
n​​g​/​m​a​i​n​.​d​o). Informed consent was obtained from all 
subjects in the study in the data collection stage. Ethical 
approval for this study was waived by the institutional 
review board of the Korean National Institute for Bio-
ethics Policy. The study adhered to the guidelines of the 
Declaration of Helsinki. All participants in KNHANES 
were selected using stratified random sampling in which 
the following factors were considered: sex, age, and resi-
dential area [16]. KNHANES comprised health records 
based on health interviews, examinations, and nutrition 
surveys. Each participant provided health and socioeco-
nomic information regarding age, household income, 
alcohol use, smoking status, presence of hypertension, 
diabetes, dyslipidemia, stroke, heart disease, osteoarthri-
tis, and osteoporosis by completing a questionnaire. The 
health examinations included body mass index (BMI), 
routine blood tests, and biochemistry tests in a general 
check-up. All participants underwent laboratory tests 
after overnight fasting.

Fig. 1  Schematic diagram of the overview of this study
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Determining RVO status
Previous studies reported detailed methods to deter-
mine RVO status in KNHANES data collection [17, 18]. 
Eye examination quality was controlled by the Epidemio-
logic Survey Committee of the Korean Ophthalmologic 
Society (KOS). Participating ophthalmologists or resi-
dents were periodically trained by acting staff members 
of the National Epidemiologic Survey Committee of the 
KOS. The data quality and collection protocols were veri-
fied by the KDCA. In KNHANES, non-mydriatic fun-
dus photography (VISUCAM, Carl Zeiss Meditec, Jena, 
Germany), and macular OCT (Cirrus HD-OCT 500, 
Carl Zeiss Meditec, Jena, Germany) were performed. 
Experienced retinal specialists certified by the Korean 
Retina Society graded the presence of RVO. An indepen-
dent grader graded all the fundus photography and OCT 
images twice. If there was a disagreement in the primary 
diagnosis, a reading committee from the Korean Retina 
Society determined the final diagnosis of RVO. This study 
did not distinguish between branch RVO (BRVO) and 
central RVO (CRVO).

Data preprocessing
The input data included demographic, clinical, and labo-
ratory parameters such as age, BMI, household income 
level, alcohol use, smoking status, systolic blood pressure 
(SBP), diastolic blood pressure (DBP), and the presence 
of hypertension, diabetes, dyslipidemia, stroke, heart 
disease, osteoarthritis, and osteoporosis. Laboratory 

evaluations comprised fasting plasma glucose (FPG), 
total cholesterol, triglycerides (TG), aspartate amino-
transferase (AST), alanine aminotransferase (ALT), cre-
atinine, white blood cell count (WBC), hemoglobin, 
and platelet counts. Figure 2 illustrates the detailed data 
workflow, including inclusion and exclusion criteria for 
model development. KNHANES collected RVO diagno-
sis data between 2017 and 2021; datasets from earlier or 
later periods were excluded due to the absence of RVO 
evaluation. Participants were included if they were aged 
40 years or older and had complete data from inter-
views, health examinations, and blood tests. Missing or 
incomplete data, including null values in key variables, 
incomplete RVO evaluations, or missing demographic 
or clinical information, resulted in participant exclusion. 
These preprocessing steps ensured the dataset’s quality 
and integrity for machine learning analysis, supporting 
the reproducibility and reliability of the study findings.

We established a research design to develop and vali-
date machine learning models in chronological order 
(data split by calendar time) [19]. The RVO predic-
tion models were developed using KNHANES data 
between 2017 and 2020 (development dataset). Because 
KNHANES randomly resampled participants every year, 
the performance of the developed models was evalu-
ated in the independent data from KNHANES 2021. We 
set KNHANES 2021 data as external validation (Fig. 2). 
This scheme was to design the retrospective develop-
ment of the machine models and consecutive prospective 

Fig. 2  Data workflow with inclusion and exclusion criteria for the machine learning model development in this study
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validation via chronological splitting [20]. Among the 
development set, 90% of the data was randomly selected 
as the training dataset, while the remaining 10% was 
used as the internal validation dataset. Tenfold cross-
validation was performed exclusively within the training 
dataset to optimize hyperparameters and evaluate model 
performance during training. We searched and trained 
optimal models using the training data through tenfold 
cross-validation. After selecting the optimal hyperparam-
eters through tenfold cross-validation, the final model 
was trained using the entire development dataset (train-
ing and internal validation set). This final model was sub-
sequently evaluated on both the internal validation set 
and the external validation set as independent tests. This 
approach ensured that no information from the valida-
tion sets influenced the model training or hyperparam-
eter tuning, maintaining the integrity of the evaluation. 
The KNHANES health data is organized at the patient 
level, ensuring that all data from the same patient is 
assigned to either the training split or the internal vali-
dation split, with no overlap. This thorough partitioning 
aligns with the rigorous data collection and sampling 
methodology of KNHANES.

The same dataset was used for both Orange Data Min-
ing and Google Vertex AI to ensure a fair comparison 
between the two platforms. In Orange Data Mining, ten-
fold cross-validation was performed to optimize hyper-
parameters and evaluate model performance during 
training. In contrast, Google Vertex AI did not require 
tenfold cross-validation, as it automatically performed 
hyperparameter tuning as part of its training process. 

A fair performance comparison was conducted using 
manually divided data without coding. Model training 
and validation were performed without manual normal-
ization of input variables. Manual normalization would 
complicate the no-code machine learning workflow, 
as it requires additional preprocessing steps that can 
be burdensome for users in later applications. The no-
code software (Orange Data Mining and Google Vertex 
AI) is designed to handle input data directly and applies 
necessary preprocessing internally, depending on the 
requirements of each algorithm. This approach ensures 
simplicity and usability for non-technical users while 
maintaining the performance of the machine learning 
models.

Machine learning development
We developed machine learning models based on the 
KNHANES datasets using no-code software. In this 
study, we adopted the Orange Data Mining version 3.36.2 
(Bioinformatics Laboratory, University of Ljubljana, Lju-
bljana, Slovenia) [21]. Orange Data Mining is a graphic 
component-based code-free tool that allows machine 
learning algorithm development (Fig.  3). Unlike the no-
code machine learning development services provided by 
platform companies, Orange Data Mining is free, open-
source software. Products made by Orange Data Mining 
can be modified without any restriction. They can also 
be distributed with development and documentation 
under a General Public License, published by the Free 
Software Foundation (​h​t​t​p​​s​:​/​​/​o​r​a​​n​g​​e​d​a​​t​a​m​​i​n​i​n​​g​.​​c​o​m​/​
l​i​c​e​n​s​e​/). It provides basic statistical analysis and major 

Fig. 3  Graphical component-based Orange Data Mining workflow
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machine learning algorithms, including artificial neural 
networks (ANN), naïve Bayes, Decision Trees, Random 
Forests, and Gradient Boosting. Machine learning could 
improve diagnostic accuracy by analyzing laboratory test 
data [22, 23]. The component-based user interface allows 
researchers to perform model selection, parameter tun-
ing, training, and validation. In Orange Data Mining, the 
hyperparameters for each machine learning method can 
be adjusted using the setting windows. To obtain the opti-
mal hyperparameters for each algorithm, we manually 
performed a grid search (Cartesian method), in which 
a range of tunable parameter values were assessed via 
the tenfold cross-validation. Additionally, we also devel-
oped a machine-learning model using Google Vertex AI 
(Fig.  4), which is the well-known cloud-based code-free 
tool for machine learning development (​h​t​t​p​​s​:​/​​/​c​l​o​​u​d​​.​g​o​​
o​g​l​​e​.​c​o​​m​/​​v​e​r​​t​e​x​​-​a​i​/​​d​o​​c​s​/​​t​r​a​​i​n​i​n​​g​-​​o​v​e​r​v​i​e​w​#​t​a​b​u​l​a​r) [24]. 
Google Vertex AI did not require manual hyperparam-
eter tuning, as it automatically performs hyperparameter 
optimization as part of its training process. According to 
its documentation (​h​t​t​p​​s​:​/​​/​c​l​o​​u​d​​.​g​o​​o​g​l​​e​.​c​o​​m​/​​v​e​r​​t​e​x​​-​a​i​/​​d​
o​​c​s​/​​t​r​a​​i​n​i​n​​g​/​​h​y​p​​e​r​p​​a​r​a​m​​e​t​​e​r​-​t​u​n​i​n​g​-​o​v​e​r​v​i​e​w), Google 
Vertex AI uses advanced hyperparameter tuning tech-
niques, such as grid search or Bayesian optimization, to 
optimize model performance during training.

Random oversampling at a ratio of 1:9 was applied to 
both the Orange Data Mining model and the Google Ver-
tex AI model during training to address the significant 
imbalance between the number of patients with RVO and 
non-RVO participants. Oversampling was performed 

using the Synthetic Minority Oversampling Technique 
(SMOTE) [25]. This process was efficiently implemented 
using an in-house-developed, webpage-based SMOTE 
function (Supplementary Material 1, ​h​t​t​p​​s​:​/​​/​t​a​e​​k​e​​u​n​t​​o​
o​.​​g​i​t​h​​u​b​​.​i​o​/​S​M​O​T​E​_​w​e​b​/), ensuring consistency across 
both the Orange Data Mining model and the Google Ver-
tex AI model. This approach enabled the models to learn 
effectively despite the rarity of RVO cases in the dataset.

Statistical analysis
To evaluate the developed models for the risk of RVO, 
we evaluated the outputs of the prediction models using 
the areas under the curves (AUCs) of receiver operating 
characteristic (ROC) curves. To comprehensively evalu-
ate the performance of the machine learning models 
for predicting RVO risk, we used accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV). Accuracy represents the over-
all proportion of correctly classified cases, providing a 
general measure of the model’s performance. Sensitiv-
ity, also referred to as recall, reflects the model’s ability 
to correctly identify individuals who are at risk of RVO, 
minimizing the chance of missed diagnoses. Specificity 
indicates the model’s ability to correctly identify individ-
uals who are not at risk for RVO, reducing false positives 
and ensuring those without the condition are not incor-
rectly flagged as high-risk. PPV measures the reliability of 
the model’s positive predictions, showing the proportion 
of individuals flagged as high-risk who have RVO. Simi-
larly, NPV indicates the reliability of the model’s negative 

Fig. 4  Console-based Google Vertex AI workflow
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Page 7 of 14Yu et al. BMC Medical Informatics and Decision Making          (2025) 25:118 

predictions by representing the proportion of individu-
als predicted to be low-risk who are indeed free of RVO. 
These metrics collectively provide a well-rounded assess-
ment of the model’s predictive capabilities, with sensitiv-
ity and specificity being particularly critical for balancing 
the identification of high-risk individuals while avoid-
ing unnecessary misclassification. The data distribution 
between the two centers was compared using the chi-
square test for categorical variables and the t-test for con-
tinuous variables. These tests were performed two-sided, 
with a significance level of P value < 0.05. Machine learn-
ing development and validation were performed using 
Orange Data Mining and Google Vertex AI. All statistical 
analyses were performed using MedCalc Version 22.021 
(Mariakerke, Belgium).

Results
The data was successfully prepared in a 1:9 ratio using 
the web-based SMOTE function, eliminating the need 
for coding. All machine learning training in Orange Data 
Mining was completed within 10 min without requiring 
coding expertise, although hyperparameter tuning was 
necessary. In contrast, Google Vertex AI did not require 
manual hyperparameter tuning but took approximately 
3 h for training. Using grid search via the tenfold cross-
validation in Orange Data Mining, we found the optimal 
hyperparameters of ANN with 100 neurons in hidden 
layers with ReLu activation function and Adam opti-
mizer. In Random Forest, grid search showed the best 
performance when the number of decision trees was 500, 
and the number of attributes considered at each split was 
five. Gradient Boosting showed the best performance 
when the number of trees was 1000, the limit depth of 
trees was 3, and the learning rate was 0.1. Decision Trees 
showed optimal performance with a maximum tree depth 
of 250 and a maximum number of features in leaves of 3. 
We used the naïve Bayes algorithm with default settings 
since Orange Data Mining did not offer a tunable option. 
In Google Vertex AI, we adopted the AutoML approach 
with a maximum of 2 node hours to search and train the 
machine learning model.

The characteristics and laboratory data of the study 
participants are summarized in Table  1. The prevalence 
of RVO in the development and external validation data-
sets was 0.7% and 0.5%, respectively, with no statistical 
difference (P-value = 0.419). However, differences in age, 
smoking, frequency of alcohol consumption, systolic 
blood pressure, high blood pressure, presence of hyper-
tension, diabetes, hyperlipidemia, stroke, heart disease, 
osteoarthritis, and osteoporosis between the develop-
ment and external validation datasets were statistically 
significant (P-value < 0.001).

Figure 5 shows the development data distribution and 
trained model (Decision Tree) exploration performed 

using the Orange Data Mining software. The t-distrib-
uted stochastic neighbor embedding (t-SNE) visualized 
whether the whole data distributions were predictable 
by machine learning according to the presence of RVO. 
In addition, we could search the distribution of data 
between two variables labeled by the presence of RVO. 
The detailed decision tree with classification criteria can 
be displayed using the model viewer. Google Vertex AI 
did not provide a model viewer to view the internal struc-
ture specifically.

We conducted a classical statistical analysis to identify 
the risk factors of RVO. Table 2 shows the results of the 
binary logistic regression models for the RVO risk. In the 
univariate analysis, RVO risk was associated with age, 
household income, SBP, hypertension, stroke, osteoporo-
sis, and WBC. After stepwise backward feature selection, 
the final model included age, smoking, DBP, hyperten-
sion, diabetes, TG, and WBC. The absence of diabetes or 
lower TG levels was more strongly associated with RVO. 
Additionally, we utilized the logistic regression results 
from Table 2 as input for ChatGPT-4 to create a no-code 
risk calculator. The code generated by ChatGPT-4 is 
included in the Supplementary Material 1, and the inter-
active calculator is publicly accessible at ​h​t​t​p​​s​:​/​​/​t​a​e​​k​e​​u​n​t​​
o​o​.​​g​i​t​h​​u​b​​.​i​o​/​R​V​O​_​r​i​s​k​_​c​a​l​c​/. This calculator allows users 
to estimate the risk of RVO based on the identified key 
predictors, providing a practical tool for further applica-
tion of our findings.

Figure  6 shows the feature importance calculations 
using Orange Data Mining and Google Vertex AI. In 
the case of Orange Data Mining, information gain was 
measured in the Random Forest and Gradient Boost-
ing algorithms, which showed the highest internal tun-
ing performance. ANN and naive Bayes did not measure 
the importance of features inside the model. Age was 
selected as the most important factor in all algorithms. 
In addition, blood pressure-related factors and household 
income were selected as the top important factors.

Figure  7 displays ROC curves of tenfold cross-valida-
tion results in the training set, internal validation, and 
external validation. In Orange Data Mining, the final 
hyperparameters selected through cross-validation were 
used to train the final model on the entire training data-
set. This final model was then evaluated on the internal 
and external validation sets as independent tests, ensur-
ing that no information from either validation set influ-
enced model training or hyperparameter tuning. The 
naïve Bayes algorithm showed the highest performance 
in predicting RVO in tenfold cross-validation and had 
an AUC of 0.698. The AUCs of logistic regression, ANN, 
Random Forest, and Gradient Boosting in tenfold cross-
validation were 0.692, 0.695, 0.629, and 0.620, respec-
tively. ANN performed best in the internal and external 
validation datasets, with 0.856 and 0.784, respectively. 

https://taekeuntoo.github.io/RVO_risk_calc/
https://taekeuntoo.github.io/RVO_risk_calc/
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In contrast, Google Vertex AI automatically performed 
hyperparameter tuning as part of its training process, 
eliminating the need for manual cross-validation. The 
final model from Google Vertex AI achieved an AUC of 
0.842 in internal validation and 0.781 in external valida-
tion. This automated approach provides a streamlined 
alternative to the manual hyperparameter optimization 
required in Orange Data Mining.

Table 3 shows detailed prediction performance metrics 
of all machine learning methods in the internal and exter-
nal validation datasets. In the internal validation, ANN, 
naive Bayes, and Google Vertex AI algorithms showed 
better AUC values than logistic regression, but the dif-
ferences were not statistically significant. In the external 
validation, ANN shows a marginally more significant 
AUC than logistic regression (P-value = 0.044). Random 
Forest, naive Bayes, and Google Vertex AI algorithms 
showed better AUC values than logistic regression, but 

differences were not statistically significant in the exter-
nal validation.

Discussion
In this machine learning-based study using national 
cross-sectional datasets, we built a novel algorithm to 
predict patients with a high risk of RVO. The machine 
learning model consistently performed well in the inter-
nal and external datasets by integrating the features 
from demographics, medical history, and laboratory 
tests. A key innovation of this study is the use of no-code 
machine learning platforms, which allowed the model to 
be developed without any coding experience. By leverag-
ing user-friendly tools such as Orange Data Mining and 
Google Vertex AI, we demonstrated that machine learn-
ing research can be conducted even by medical research-
ers without extensive technical expertise. This lowers the 
barrier to entry for implementing AI-driven solutions in 

Table 1  Demographics and clinical features in this study
Category Variable Development set (training and 

internal validation) KNHANES 2017 
to 2020, N = 12,350)

External validation set 
(KNHANES 2021, N = 1,699)

P-
value

Eye examination RVO (%) 82 (0.7) 8 (0.5) 0.419
Demographics and BMI Age (years) 59.79 ± 11.55 49.87 ± 5.80 0.001

Sex, female (%) 7009 (56.8) 972 (57.2) 0.734
BMI (kg/m2) 24.17 ± 3.27 24.25 ± 3.64 0.367
Household income < 0.001
   Very low (%) 2738 (22.2) 120 (7.1)
   Low (%) 3108 (25.2) 354 (20.8)
   Moderate (%) 3161 (25.6) 524 (30.8)
   High (%) 3343 (27.1) 693 (40.8)

Medical History and blood 
pressure

Current smoker (%) 1963 (15.9) 333 (19.6) < 0.001
Alcohol, ≥ 1 drink/week (%) 4866 (39.4) 775 (45.6) < 0.001
Blood pressure
   SBP (mmHg) 122.21 ± 16.68 117.02 ± 14.63 < 0.001
   DBP (mmHg) 76.01 ± 9.94 75.86 ± 10.30 0.565
Hypertension (%) 3941 (31.9) 277 (16.3) < 0.001
Diabetes mellitus (%) 1602 (13.0) 127 (7.5) < 0.001
Dyslipidemia (%) 2838 (23.0) 300 (17.7) < 0.001
Stroke (%) 271 (2.2) 7 (0.4) < 0.001
Heart disease (%) 438 (3.5) 14 (0.8) < 0.001
Osteoarthritis (%) 1894 (15.3) 97 (5.7) < 0.001
Osteoporosis (%) 1077 (8.7) 37 (2.2) < 0.001

Laboratory data Fasting glucose (mg/dL) 104.64 ± 25.2 102.87 ± 22.49 0.006
Total cholesterol (mg/dL) 192.23 ± 39.55 199.45 ± 39.13 < 0.001
Triglyceride (mg/dL) 138.34 ± 104.08 137.40 ± 117.04 0.753
AST (IU/L) 24.91 ± 15.71 25.05 ± 12.04 0.731
ALT (IU/L) 22.89 ± 16.38 24.90 ± 18.47 < 0.001
Creatinine (mg/dL) 0.81 ± 0.26 0.78 ± 0.26 < 0.001
WBC (103cells/µL) 6.08 ± 1.71 5.92 ± 1.60 < 0.001
Hemoglobin (mg/dL) 13.89 ± 1.54 13.91 ± 1.56 0.530
Platelet (109/L) 251.74 ± 64.82 260.04 ± 60.94 < 0.001

AST, aspartate aminotransferase; ALT, alanine aminotransferase; BMI, body mass index; DBP, diastolic blood pressure; RVO, retinal vein occlusion; SBP, systolic blood 
pressure; WBC, white blood cell
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healthcare and promotes the adoption of predictive mod-
els in real-world clinical practice. We expect that basic 
health check-ups can identify a population with a high 
risk of RVO without fundus examination. This promising 
finding paves the way for the development of advanced 
prediction technology for the automated identification of 
high-risk RVO patients in primary health check-up cen-
ter settings. Patients identified as high-risk during rou-
tine examinations can be referred to ophthalmologists for 
fundus examinations. For those without existing disease, 
proactive management of modifiable risk factors, such as 
blood pressure control, could help reduce the likelihood 
of developing RVO.

The potential of data mining to improve decision-mak-
ing in healthcare has been widely recognized, as demon-
strated in studies exploring its applications in optimizing 
health services and resource management [26]. This study 
extends these applications by being the first to build 
machine learning models specifically aimed at predicting 
the risk of developing RVO. This study is the first to build 
machine learning models to predict RVO risk. Prior stud-
ies have focused on diagnosing RVO disease by analyzing 
the retinal image. Studies that diagnose RVO using deep 
learning using fundus photographs or OCT images have 
been introduced [27, 28]. However, these studies could 
only be applied to eyes that had already developed RVO 

and did not allow for a quantitative assessment of the risk 
of developing the disease. In contrast, this study analyzed 
the incidence data of RVO in a large demographic sam-
ple to directly assess the risk of developing the disease. 
Although the prevalence of RVO is small, the developed 
model can present a statistically significant RVO risk 
based on machine learning and large data.

RVO, a retinal disease caused by blockage of venous 
blood vessels due to thrombus and narrowing of blood 
vessels, has a similar development mechanism as car-
diovascular disease [29]. RVO can suddenly occur if risk 
factors accumulate, and its clinical manifestations can 
vary depending on the site of vein occlusion. Controlling 
modifiable factors and early treatment by ophthalmolo-
gists can lead to a good clinical outcome. However, in 
South Korea’s general healthcare check-up system, fun-
dus photography is not provided, and clinicians often 
fail to identify patients with RVO. An advantage of our 
proposed model is that it provides a machine learning-
based tool to determine patients who might have the 
high RVO risk using routine health examinations in pri-
mary medical facilities. The final ANN model achieved 
consistent RVO detection accuracy in all validation data-
sets and outperformed logistic regression in the external 
validation.

Fig. 5  Data visualization processes provided by Orange Data Mining. (A) t-SNE plot. (B) Scatter plot. (C) Decision tree viewer
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With the growing popularity of artificial intelligence, 
code-free tools for deep learning model development, 
particularly for analyzing medical images, have gained 
attention [10, 30]. However, there remains a signifi-
cant need for research focusing on the application of 
code-free tools to tabular medical data [12]. This study 
demonstrates that machine learning research can be 
effectively conducted in the medical domain using tabu-
lar data with Orange Data Mining software, a code-free 
and user-friendly platform that enables machine learning 
development without requiring programming expertise. 
Additionally, the software supports external integration 
of developed models through programming languages 
like Python, enhancing its versatility. To address class 
imbalance in tabular data, we introduced an easy-to-
use, webpage-based SMOTE function (​h​t​t​p​​s​:​/​​/​t​a​e​​k​e​​u​n​t​​
o​o​.​​g​i​t​h​​u​b​​.​i​o​/​S​M​O​T​E​_​w​e​b​/) for no-code development, 
which streamlined the workflow. Compared to Google’s 
AutoML, Orange Data Mining surpasses it in terms of 
usability and scalability, as applied in this study. In this 

study, the ReLu-based ANN and Naive Bayes algorithms 
performed well, demonstrating robustness on imbal-
anced data without overfitting [31, 32], outperforming 
tree-based models in this scenario. Furthermore, there 
have been recent advances in performing regression 
analysis without coding by utilizing multimodal chat-
bots such as ChatGPT-4 [33]. In this study, we validated 
this approach by successfully creating a logistic regres-
sion calculator using ChatGPT-4. While the integration 
of such chatbots into machine learning workflows is still 
in its early stages, further developments in this area are 
anticipated, offering even greater accessibility to AI-
driven insights. The use of no-code tools for machine 
learning development holds the potential to significantly 
simplify and accelerate the creation of accurate predic-
tion models for various diseases. By removing the techni-
cal barrier of coding, these tools can drive the adoption 
of AI technologies in clinical practice, making them 
accessible to a broader range of medical researchers and 
practitioners.

Table 2  Logistic regression analysis of clinical features for the risk of RVO in the development dataset
Univariate model* Adjusted model†
OR (95% CI) P-value OR (95% CI) P-value

Age (year, per 1 unit increase) 1.06 (1.04–1.08) < 0.001 1.06 (1.03–1.08) < 0.001
Sex, female 0.95 (0.62–1.44) 0.810
BMI (kg/m2, per 1 unit increase) 1.04 (0.98–1.10) 0.198
Household income
   Very low Reference
   Low 0.55 (0.32–0.94) 0.029
   Moderate 0.44 (0.25–0.78) 0.005
   High 0.34 (0.19–0.62) < 0.001
Current smoker (%) 1.02 (0.58–1.78) 0.934 1.42 (0.78–2.57) 0.252
Alcohol, ≥ 1 drink/week (%) 0.67 (0.43–1.05) 0.081
Blood pressure
SBP (mmHg, per 1 unit increase) 1.03 (1.01–1.04) < 0.001
DBP (mmHg, per 1 unit increase) 1.02 (0.99–1.04) 0.147 1.03 (1.01–1.05) 0.004
Hypertension 4.07 (2.65–6.25) < 0.001 2.78 (1.74–4.44) < 0.001
Diabetes mellitus 0.79 (0.39–1.57) 0.505 0.47 (0.23–0.95) 0.036
Dyslipidemia 1.49 (0.95–2.35) 0.082
Stroke 2.95 (1.18–7.33) 0.020
Heart disease 2.16 (0.94–4.98) 0.069
Osteoarthritis 1.31 (0.76–2.25) 0.327
Osteoporosis 2.15 (1.21–3.82) 0.009
Fasting glucose (mg/dL, per 1 unit increase) 0.99 (0.98–1.01) 0.630
Total cholesterol (mg/dL, per 1 unit increase) 0.99 (0.98-1.00) 0.051
Triglyceride (mg/dL, per 1 unit increase) 0.99 (0.99-1.00) 0.226 0.99 (0.99-1.00) 0.088
AST (IU/L, per 1 unit increase) 0.99 (0.98–1.02) 0.868
ALT (IU/L, per 1 unit increase) 0.99 (0.98–1.01) 0.459
Creatinine (mg/dL, per 1 unit increase) 1.37 (0.95–1.98) 0.096
WBC (103cells/µL, per 1 unit increase) 1.12 (1.01–1.25) 0.039 1.10 (0.98–1.23) 0.117
Hemoglobin (mg/dL, per 1 unit increase) 1.00 (0.87–1.14) 0.999
Platelet (109/L, per 1 unit increase) 0.99 (0.99-1.00) 0.224
* Univariate logistic regression analysis for each variable

† Multivariable logistic regression with stepwise backward selection model

https://taekeuntoo.github.io/SMOTE_web/
https://taekeuntoo.github.io/SMOTE_web/
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Fig. 7  ROC curves of the developed models to predict RVO. (A) Ten-fold cross-validation result from Orange Data Mining. (B) Internal validation from 
Orange Data Mining. (C) External validation from Orange Data Mining. (D) Internal validation from Google Vertex AI. (E) External validation from Google 
Vertex AI

 

Fig. 6  Feature importance plots. (A) Information gain from Random Forest. (B) Information gain from Gradient Boosting. (C) Feature importance from 
Google Vertex AI
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This study demonstrates that RVO risk can be esti-
mated through machine learning by combining multiple 
risk factors. Previous research has established that vari-
ous risk factors contribute to the development of RVO 
[34]. However, the structure and crossing of arteriove-
nous vessels, particularly in BRVO, play a significant role 
in its development [35], making it challenging to accu-
rately predict RVO using systemic risk factors alone. Our 
findings confirmed that factors related to blood pressure 
have a significant impact on the occurrence of RVO. In 
contrast, the relationship between diabetes and RVO was 
either reversed or not significant, suggesting the need for 
further investigation into the mechanisms underlying 
RVO development in Koreans. While previous studies 
have identified both blood pressure and diabetes as criti-
cal risk factors for RVO [4, 36], the weaker association 
with diabetes observed in this study may reflect the active 
diabetes screening and treatment efforts currently under-
way in South Korea [37]. Socioeconomic factors could 
also have influenced the decreased relationship between 
diabetes and RVO in this population, highlighting the 
importance of considering regional and demographic 
contexts in future research.

RVO cannot be perfectly predicted due to its depen-
dence on the structural anatomy of blood vessels, par-
ticularly the configuration of arteriovenous crossings [38, 
39]. However, predicting vascular health and assessing 
the risk of RVO occurrence offers a preventive approach. 
This aligns with the principles of oculomics, which uses 
retinal analysis as a proxy for evaluating systemic vas-
cular health [40, 41]. By leveraging a machine learn-
ing model trained on widely accessible health check-up 
data, clinicians can identify high-risk individuals without 
the need for specialized imaging tools, such as fundus 
photography or OCT. This cost-effective and scalable 

approach enables risk stratification in primary care and 
general health screening settings, facilitating early refer-
rals to ophthalmologic specialists and timely interven-
tions. High-risk individuals could benefit from targeted 
management of modifiable risk factors, such as hyper-
tension and smoking, reducing their likelihood of devel-
oping RVO. Furthermore, the model’s no-code design 
allows seamless integration into routine clinical work-
flows, making it accessible even to healthcare provid-
ers with limited technical expertise [33]. Ultimately, this 
approach has the potential to improve patient outcomes 
through proactive risk management, optimized resource 
allocation, and a reduction in the burden of advanced 
RVO-related complications on healthcare systems.

There are several limitations in this study. First, the 
cross-sectional nature of KNHANES data collection hin-
ders us from developing a machine-learning model for 
future RVO prediction. A longitudinal follow-up research 
design is required to build the future RVO development 
prediction model. Second, this study data was based on a 
single Asian country, raising uncertainty about the gener-
alizability of our developed models to other countries or 
ethnic groups. Both retinal vasculature and cardiovascu-
lar disease risk may differ between races [42, 43]. Third, 
laboratory tests and body mass index measurements may 
vary depending on the timing of data collection. Fourth, 
the lack of information on the type of RVO is another 
limitation. Because CRVO and BRVO may have differ-
ent pathophysiology [44], the absence of this information 
might have confounded our results. Additionally, the use 
of no-code tools for machine learning, while advanta-
geous for accessibility and ease of use, introduces limita-
tions such as reduced flexibility in model customization 
and reliance on built-in functionalities [45]. Future stud-
ies could explore hybrid approaches that combine 

Table 3  Diagnostic performance in the internal and external validation sets
Validation Classification 

algorithm
ROC-AUC (95% CI) Sensitivity (%, 

95% CI)
Specificity (%, 
95% CI)

PPV (%, 
95% CI)

NPV (%, 95% CI) P-value

Internal 
validation

Logistic regression 0.840 (0.818, 0.860) 75.0 (34.9, 96.8) 85.6 (83.5, 87.5) 3.3 (2.1, 4.9) 99.8 (99.3, 99.9) Reference
Decision tree 0.569 (0.541, 0.597) 100.0 (63.1, 100.0) 13.8 (11.9, 15.9) 0.7 (0.7, 0.8) 100.0 (97.8, 100.0) < 0.001
Gradient Boosting 0.699 (0.673, 0.725) 87.5 (47.3, 99.6) 58.5 (55.7, 61.2) 1.3 (1.0, 1.7) 99.8 (99.1, 99.9) 0.003
Random Forest 0.763 (0.739, 0.787) 75.0 (34.9, 96.8) 71.5 (68.8, 73.9) 1.7 (1.1, 2.5) 99.7 (99.2, 99.9) 0.049
naïve Bayes 0.847 (0.826, 0.867) 100.0 (63.1, 100.0) 67.4 (64.7, 70.1) 1.9 (1.8, 2.1) 100.0 (99.5, 100.0) 0.837
ANN 0.856 (0.835, 0.875) 75.0 (34.9, 96.8) 84.5 (82.4, 86.5) 3.1 (2.0, 4.6) 99.8 (99.3, 99.9) 0.601
Google Vertex AI 0.842 (0.820, 0.861) 100.0 (63.1, 100.0) 66.7 (63.9, 69.3) 1.9 (1.7, 2.0) 100.0 (99.5, 100.0) 0.848

External 
validation

Logistic regression 0.738 (0.716, 0.759) 62.5 (24.5, 91.4) 82.9 (81.1, 84.7) 1.7 (0.9, 2.9) 99.7 (99.4, 99.9) Reference
Decision tree 0.546 (0.522, 0.570) 87.5 (47.3, 99.6) 21.5 (19.5, 23.5) 0.5 (0.4, 0.7) 99.7 (98.3, 99.9) 0.008
Gradient Boosting 0.693 (0.670, 0.715) 87.5 (47.3, 99.6) 48.5 (46.1, 50.9) 0.8 (0.6, 1.0) 99.8 (99.2, 99.9) 0.612
Random Forest 0.746 (0.724, 0.766) 75.0 (34.9, 96.8) 75.6 (73.5, 77.7) 1.4 (0.9, 2.1) 99.8 (00.4, 99.9) 0.898
naïve Bayes 0.760 (0.739, 0.780) 87.5 (47.3, 99.6) 70.5 (68.3, 72.7) 1.4 (1.0, 1.8) 99.9 (99.4, 99.9) 0.765
ANN 0.784 (0.763, 0.803) 62.5 (24.5, 91.4) 93.7 (92.4, 94.8) 4.5 (2.6, 7.7) 99.8 (99.5, 99.9) 0.044
Google Vertex AI 0.761 (0.740, 0.781) 87.5 (47.3, 99.6) 70.7 (68.5, 72.9) 1.4 (1.0, 1.8) 99.9 (99.4–99.9) 0.756

ANN, artificial neural networks; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; ROC-AUC, the areas under the receiver 
operating characteristic curve
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no-code tools with traditional coding environments to 
balance accessibility and technical control.

This study highlights opportunities for future research. 
While this study focused on tabular health check-up 
data, integrating imaging data such as fundus photo-
graphs or OCT scans in multimodal approaches could 
enhance longitudinal prediction accuracy. The rarity of 
RVO presents challenges in handling imbalanced data-
sets, even with SMOTE, suggesting that future works 
explore alternative methods like cost-sensitive learning. 
Moreover, the lack of differentiation between BRVO and 
CRVO subtypes limits the applicability of the findings, 
and future models should address this. Model interpret-
ability remains an issue, particularly with ANN models, 
warranting further research into explainable AI tech-
niques to improve clinical transparency. Finally, real-
time, automated tools that integrate with electronic 
medical records could streamline RVO risk assessments 
during routine health check-ups, expanding the practical 
applications of this approach.

Conclusion
We developed a machine learning model for RVO risk 
prediction using health check-up data, incorporating 
demographic information, medical history, and labo-
ratory test results, without requiring fundus examina-
tion. To overcome the technical barriers associated with 
coding-based machine learning model development, we 
utilized a code-free and user-friendly tool. This approach 
provides a low-cost and accessible solution for RVO risk 
prediction in general health check-up settings. Addi-
tionally, our methodology demonstrates the potential of 
using tabular data for developing prediction models for 
various low-prevalence diseases. Further research using 
larger RVO datasets and data from diverse regions is 
needed to validate the feasibility and generalizability of 
this approach.

Abbreviations
ALT	� Alanine aminotransferase
AST	� Aspartate aminotransferase
AUC	� Areas under the receiver operating characteristic curve
ANN	� Artificial neural networks
BMP	� Body mass index
DPB	� Diastolic blood pressure
FPG	� Fasting plasma glucose
KNHANES	� Korea National Health and Nutrition Examination Surveys
NPV	� Negative predictive value
OCT	� Optical coherence tomography
PPV	� Positive predictive value
RVO	� Retinal vein occlusion
SBP	� Systolic blood pressure
SMOTE	� Synthetic minority oversampling technique
TG	� Triglycerides

Supplementary Information
The online version contains supplementary material available at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​
g​/​​1​0​.​​1​1​8​6​​/​s​​1​2​9​1​1​-​0​2​5​-​0​2​9​5​0​-​8.

Supplementary Material 1

Acknowledgements
None.

Author contributions
NHY and DS acquired and analyzed data, interpreted the results, and drafted 
the manuscript. TKY and KK suggested the original study idea, interpreted the 
results, contributed to writing. IHR, TKY, and KK analyzed data and contributed 
to data interpretation and manuscript editing.

Funding
None.

Data availability
All the data supporting the findings of this study are available within the 
article. The data is available to the public (​h​t​t​p​​s​:​/​​/​k​n​h​​a​n​​e​s​.​​k​d​c​​a​.​g​o​​.​k​​r​/​k​​n​h​a​​n​e​s​
/​​e​n​​g​/​i​n​d​e​x​.​d​o, ​h​t​t​p​​s​:​/​​/​k​n​h​​a​n​​e​s​.​​k​d​c​​a​.​g​o​​.​k​​r​/​k​​n​h​a​​n​e​s​/​​e​n​​g​/​m​a​i​n​.​d​o) for research 
purposes.

Dode availability
This study used no-code tools, so there is no code for developing machine 
learning models.

Declarations

Ethics approval and consent to participate
The KNHANES is a nationwide cross-sectional study conducted by the Korea 
Disease Control and Prevention Agency (KDCA). The data collection protocol 
was approved by the institutional review board (IRB) at the KDCA. Ethical 
approval for this study was waived by the institutional review board of the 
Korean National Institute for Bioethics Policy and informed consent from 
the patients was also waived. The study adhered to the guidelines of the 
Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
IHR is the director of VISUWORKS and holds company stock. IHR also serves 
on the Advisory Board for Carl Zeiss Meditec AG and Avellino Lab USA/MAB, 
as well as for Avellino Lab Korea. The remaining authors declare no conflicts 
of interest.

Author details
1Department of Ophthalmology, Kim’s Eye Hospital, Konyang University 
College of Medicine, Seoul, South Korea
2Department of Refractive Surgery, B&VIIT Eye Center, Seoul, South Korea
3Research and Development Department, VISUWORKS, Seoul, South 
Korea
4Department of Ophthalmology, Hangil Eye Hospital, 35 Bupyeong-
daero, Bupyeong-gu, Incheon 21388, South Korea
5Cornea, Cataract and Refractive Surgery Division Kim’s Eye 
Hospital, Konyang University College of Medicine, 136 Yeongshinro, 
Youngdeungpogu, Seoul 07301, Republic of Korea

Received: 12 April 2024 / Accepted: 24 February 2025

References
1.	 Laouri M, Chen E, Looman M, Gallagher M. The burden of disease of retinal 

vein occlusion: review of the literature. Eye. 2011;25:981–8.
2.	 Lim LL, Cheung N, Wang JJ, Islam FMA, Mitchell P, Saw SM, et al. Prevalence 

and risk factors of retinal vein occlusion in an Asian population. Br J Ophthal-
mol. 2008;92:1316–9.

3.	 Rogers S, McIntosh RL, Cheung N, Lim L, Wang JJ, Mitchell P, et al. The 
prevalence of retinal vein occlusion: pooled data from population studies 

https://doi.org/10.1186/s12911-025-02950-8
https://doi.org/10.1186/s12911-025-02950-8
https://knhanes.kdca.go.kr/knhanes/eng/index.do
https://knhanes.kdca.go.kr/knhanes/eng/index.do
https://knhanes.kdca.go.kr/knhanes/eng/main.do


Page 14 of 14Yu et al. BMC Medical Informatics and Decision Making          (2025) 25:118 

from the united States, Europe, Asia, and Australia. Ophthalmology. 
2010;117:313–e3191.

4.	 Chang Y-S, Ho C-H, Chu C-C, Wang J-J, Jan R-L. Risk of retinal vein occlusion 
in patients with diabetes mellitus: A retrospective cohort study. Diabetes Res 
Clin Pract. 2021;171:108607.

5.	 Kolar P. Risk factors for central and branch retinal vein occlusion: a meta-
analysis of published clinical data. J Ophthalmol. 2014;2014:724780.

6.	 Choi JY, Yoo TK. Development of a novel scoring system for glaucoma risk 
based on demographic and laboratory factors using ChatGPT-4. Med Biol 
Eng Comput. 2024. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​​o​r​​g​​/​​1​0​​.​1​0​​​0​7​​/​s​1​1​​5​1​7​-​​0​2​4​-​0​​3​1​8​2​-​0.

7.	 Oh E, Yoo TK, Park E-C. Diabetic retinopathy risk prediction for fundus exami-
nation using sparse learning: a cross-sectional study. BMC Med Inf Decis Mak. 
2013;13:106.

8.	 Elkazza SAA. Prognosis prediction in retinal vein occlusion. Thesis. Newcastle 
University; 2023.

9.	 Xing Z, Liu H, Sun Y, Zhang Y, Xing X, Yang K et al. Relationship between 
retinal volume changes and the prognosis of BRVO-ME treated with Ranibi-
zumab. Heliyon. 2024;10.

10.	 Korot E, Guan Z, Ferraz D, Wagner SK, Zhang G, Liu X, et al. Code-free deep 
learning for multi-modality medical image classification. Nat Mach Intell. 
2021;3:288–98.

11.	 Hussain S. Survey on current trends and techniques of data mining research. 
Lond J Res Comput Sci Technol. 2017;17:11.

12.	 Shin D, Choi H, Kim D, Park J, Yoo TK, Koh K. Code-Free machine learning 
approach for EVO-ICL vault prediction: A retrospective Two-Center study. 
Translational Vis Sci Technol. 2024;13:4.

13.	 Navarro CLA, Damen JAA, Takada T, Nijman SWJ, Dhiman P, Ma J, et al. Risk of 
bias in studies on prediction models developed using supervised machine 
learning techniques: systematic review. BMJ. 2021;375:n2281.

14.	 Xu W, Yan Z, Chen N, Luo Y, Ji Y, Wang M, et al. Development and application 
of an intelligent diagnosis system for retinal vein occlusion based on deep 
learning. Dis Markers. 2022;2022:4988256.

15.	 Fujita A, Hashimoto Y, Okada A, Obata R, Aihara M, Matsui H, et al. Associa-
tion between proteinuria and retinal vein occlusion in individuals with 
preserved renal function: a retrospective cohort study. Acta Ophthalmol. 
2022;100:e1510–7.

16.	 Kim JS, Kim M, Kim SW, Prevalence, Survey VII. Clin Exp Ophthalmol. 
2022;50:2017–8.

17.	 Song SJ, Choi KS, Han JC, Jee D, Jeoung JW, Jo YJ, et al. Methodology and 
rationale for ophthalmic examinations in the seventh and eighth Korea 
National health and nutrition examination surveys (2017–2021). Korean J 
Ophthalmol. 2021;35:295–303.

18.	 Oh TR, Han K-D, Choi HS, Kim CS, Bae EH, Ma SK, et al. Hypertension as a 
risk factor for retinal vein occlusion in menopausal women. Med (Baltim). 
2021;100:e27628.

19.	 Ye C, Fu T, Hao S, Zhang Y, Wang O, Jin B, et al. Prediction of incident hyper-
tension within the next year: prospective study using statewide electronic 
health records and machine learning. J Med Internet Res. 2018;20:e22.

20.	 Yoo TK, Ryu IH, Kim JK, Lee IS, Kim HK. A deep learning approach for detec-
tion of shallow anterior chamber depth based on the hidden features of 
fundus photographs. Comput Methods Programs Biomed. 2022;219:106735.

21.	 Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, et al. Orange: 
data mining toolbox in Python. J Mach Learn Res. 2013;14:2349–53.

22.	 Park DJ, Park MW, Lee H, Kim Y-J, Kim Y, Park YH. Development of machine 
learning model for diagnostic disease prediction based on laboratory tests. 
Sci Rep. 2021;11:7567.

23.	 Yoo TK, Kim SK, Kim DW, Choi JY, Lee WH, Oh E, et al. Osteoporosis risk predic-
tion for bone mineral density assessment of postmenopausal women using 
machine learning. Yonsei Med J. 2013;54:1321–30.

24.	 Raghavendran KR, Elragal A. Low-Code machine learning platforms: A fast-
lane to digitalization. Informatics. 2023;10:50.

25.	 Mujahid M, Kına E, Rustam F, Villar MG, Alvarado ES, De La Torre Diez I, et al. 
Data oversampling and imbalanced datasets: an investigation of perfor-
mance for machine learning and feature engineering. J Big Data. 2024;11:87.

26.	 Cifci MA, Hussain S. Data mining usage and applications in health services. 
JOIV: Int J Inf Visualization. 2018;2:225–31.

27.	 Ren X, Feng W, Ran R, Gao Y, Lin Y, Fu X, et al. Artificial intelligence to distin-
guish retinal vein occlusion patients using color fundus photographs. Eye. 
2023;37:2026–32.

28.	 Schlegl T, Waldstein SM, Bogunovic H, Endstraßer F, Sadeghipour A, Philip 
A-M, et al. Fully automated detection and quantification of macular fluid in 
OCT using deep learning. Ophthalmology. 2018;125:549–58.

29.	 Jaulim A, Ahmed B, Khanam T, Chatziralli IP, BRANCH RETINAL VEIN. OCCLU-
SION: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, 
and complications. An update of the literature. RETINA. 2013;33:901.

30.	 Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, et al. Automated deep 
learning design for medical image classification by health-care profes-
sionals with no coding experience: a feasibility study. Lancet Digit Health. 
2019;1:e232–42.

31.	 Kim T, Lee J-S. Maximizing AUC to learn weighted Naive Bayes for imbalanced 
data classification. Expert Syst Appl. 2023;217:119564.

32.	 Sen S, Singh KP, Chakraborty P. Dealing with imbalanced regression problem 
for large dataset using scalable artificial neural network. New Astron. 
2023;99:101959.

33.	 Choi JY, Han E, Yoo TK. Application of ChatGPT-4 to oculomics: a cost-effec-
tive osteoporosis risk assessment to enhance management as a proof-of-
principles model in 3PM. EPMA J. 2024;15:659–76.

34.	 Cugati S, Wang JJ, Rochtchina E, Mitchell P. Ten-Year incidence of retinal 
vein occlusion in an older population: the blue mountains eye study. Arch 
Ophthalmol. 2006;124:726–32.

35.	 Muraoka Y, Tsujikawa A. Arteriovenous crossing associated with branch retinal 
vein occlusion. Jpn J Ophthalmol. 2019;63:353–64.

36.	 Ponto KA, Scharrer I, Binder H, Korb C, Rosner AK, Ehlers TO, et al. Hyperten-
sion and multiple cardiovascular risk factors increase the risk for retinal 
vein occlusions: results from the Gutenberg retinal vein occlusion study. J 
Hypertens. 2019;37:1372.

37.	 Shin DW, Cho J, Park JH, Cho B. National general health screening program 
in Korea: history, current status, and future direction. Precision Future Med. 
2022;6:9–31.

38.	 Noh SY, Lee JH, Jeong WJ. Branch retinal vein occlusion with arteriovenous 
crossing. J Retin. 2023;8:36–41.

39.	 Choi EY, Kim D, Kim J, Kim E, Lee H, Yeo J, et al. Predicting branch retinal vein 
occlusion development using multimodal deep learning and pre-onset 
fundus hemisection images. Sci Rep. 2025;15:2729.

40.	 Kim BR, Yoo TK, Kim HK, Ryu IH, Kim JK, Lee IS, et al. Oculomics for sarcopenia 
prediction: a machine learning approach toward predictive, preventive, and 
personalized medicine. EPMA J. 2022;13:367–82.

41.	 Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, et al. Insights into 
systemic disease through retinal Imaging-Based oculomics. Trans Vis Sci Tech. 
2020;9:6–6.

42.	 Li X, Wong WL, Cheung CY, Cheng C-Y, Ikram MK, Li J, et al. Racial differences 
in retinal vessel geometric characteristics: A multiethnic study in healthy 
Asians. Investig Ophthalmol Vis Sci. 2013;54:3650–6.

43.	 Gijsberts CM, den Ruijter HM, Asselbergs FW, Chan MY, de Kleijn DPV, Hoefer 
IE. Biomarkers of coronary artery disease differ between Asians and Cauca-
sians in the general population. Global Heart. 2015;10:301–e31111.

44.	 Cho B-J, Bae SH, Park SM, Shin MC, Park IW, Kim HK, et al. Comparison of 
systemic conditions at diagnosis between central retinal vein occlusion and 
branch retinal vein occlusion. PLoS ONE. 2019;14:e0220880.

45.	 Khankhoje R. Beyond coding: A comprehensive study of Low-Code, No-Code 
and traditional automation. J Artif Intell Cloud Comput. 2022;1:1–5.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1007/s11517-024-03182-0

	﻿Retinal vein occlusion risk prediction without fundus examination using a no-code machine learning tool for tabular data: a nationwide cross-sectional study from South Korea
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Study design and participants
	﻿Determining RVO status
	﻿Data preprocessing
	﻿Machine learning development
	﻿Statistical analysis

	﻿Results
	﻿Discussion
	﻿Conclusion
	﻿References


