
R E S E A R C H Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​
v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​​i​c​e​​n​s​e​s​​/​b​​y​-​n​c​-​n​d​/​4​.​0​/.

Fang et al. BMC Medical Informatics and Decision Making          (2025) 25:131 
https://doi.org/10.1186/s12911-025-02956-2

BMC Medical Informatics 
and Decision Making

†Chengjie Pan contributed equally to this work.

Min Fang and Chengjie Pan: co-first author.

*Correspondence:
Wenjuan Li
liwenjuan@hznu.edu.cn
1School of Information Science and Technology, Hangzhou Normal 
University, Yuhangtang Rd., Hangzhou, Zhejiang 311121, China

2Engineering Research Center of Mobile Health Management System, 
Ministry of Education, Yuhangtang Rd., Hangzhou, Zhejiang  
311121, China
3College of Engineering, Zhejiang University, Yuhangtang Rd., Hangzhou, 
Zhejiang 310058, China
4Zhejiang Yishan Smart Medical Research Co., Ltd., Liangmu Rd., 
Hangzhou, Zhejiang 311121, China
5Computer Science and Technology, Zhejiang University, Yuhangtang Rd., 
Hangzhou, Zhejiang 310058, China

Abstract
Hyperuricemia has seen a continuous increase in incidence and a trend towards younger patients in recent 
years, posing a serious threat to human health and highlighting the urgency of using technological means for 
disease risk prediction. Existing risk prediction models for hyperuricemia typically include two major categories of 
indicators: routine blood tests and biochemical tests. The potential of using routine blood tests alone for prediction 
has not yet been explored. Therefore, this paper proposes a hyperuricemia risk prediction model that integrates 
Particle Swarm Optimization (PSO) with machine learning, which can accurately assess the risk of hyperuricemia 
by relying solely on routine blood data. In addition, an interpretability method based on Explainable Artificial 
Intelligence(XAI) is introduced to help medical staff and patients understand how the model makes decisions. 
This paper uses Cohen’s d value to compare the differences in indicators between hyperuricemia and non-
hyperuricemia patients and identifies risk factors through multivariate logistic regression. Subsequently, a risk 
prediction model is constructed based on the parameter optimization of five machine learning models using the 
PSO algorithm. The accuracy and sensitivity of the proposed particle swarm fusion Stacking model reach 97.8% 
and 97.6%, marking an improvement in accuracy of over 11% compared to the state-of-the-art models. Finally, a 
sensitivity analysis of factors affecting the prediction results is conducted using the XAI method. This paper has 
also developed a Health Portrait Platform that integrates the proposed risk prediction models, enabling real-time 
online health risk assessment. Since only routine blood test data are used, the new model has better feasibility and 
scalability, providing a valuable reference for assessing the risk of hyperuricemia occurrence.
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Background
Uric acid is the end product of purine catabolism in 
the human body and plays a positive role in antioxidant 
activity and blood pressure maintenance [1]. Uric acid is 
closely related to human health conditions, and imbal-
ances in uric acid can lead to a series of adverse reac-
tions [2, 3]. Under normal circumstances, about 70% of 
the uric acid produced in the body is excreted through 
the kidneys in urine, while the remaining 30% is excreted 
through the intestines [4]. Overproduction of uric acid 
or insufficient excretion leads to higher than normal uric 
acid levels in the blood, a condition known as hyperuri-
cemia [5].

The global prevalence of hyperuricemia varies sig-
nificantly across different regions, but with the develop-
ment of the social economy and lifestyle changes, the 
prevalence is generally on the rise. In Asia, particularly 
in China and Japan, the prevalence of hyperuricemia 
and its complications is high and increasingly tends to 
be younger. According to the data from the 2018–2019 
China Chronic Disease and Risk Factor Surveillance, 
the prevalence of hyperuricemia among Chinese adult 
residents is 14.0%, with male and female prevalence rates 
being 24.5% and 3.6%, respectively [6–8].

Hyperuricemia has a very high correlation with gout, 
and clinical evidence suggests that the former is an 
important biochemical basis for gout [9]. In addition, the 
persistent increase in blood uric acid levels is also asso-
ciated with the occurrence and development of kidney 
diseases, endocrine metabolic diseases, cardiovascular 
and cerebrovascular diseases, etc. [10]. Hyperuricemia 
is also an independent risk factor for chronic kidney dis-
ease, hypertension, cardiovascular and cerebrovascular 
diseases, and diabetes, and is an independent predictor 
of premature death [11]. It is evident that hyperuricemia 
poses a significant threat to human health, increasing the 
risk of various diseases, and has become a serious public 
health issue.

However, hyperuricemia is not easily detected in its 
early stages, mainly because it has no obvious symptoms 
[12]. Therefore, most patients rarely notice any abnormal-
ities in their blood uric acid levels before gout or other 
serious complications. Moreover, the gradual increase in 
uric acid levels is usually slow, and slight early increases 
can easily be overlooked. Consequently, without regular 
health check-ups, especially blood tests targeting uric 
acid levels, hyperuricemia may go undiagnosed for a long 
period.

Considering the high cost and long duration of diagnos-
ing hyperuricemia in large populations, developing a pre-
dictive model to screen high-risk groups and reduce the 
screening scope is an effective alternative approach. Cur-
rently, researchers mainly use machine learning methods 
to construct risk prediction models for hyperuricemia. 

For instance, literature [13] built a hyperuricemia risk 
prediction model through stepwise logistic regression 
analysis, decision tree algorithms, and Lasso regression 
analysis, and these models have shown good predictive 
performance on both the training and validation sets. Shi 
Jiacheng and others developed a hyperuricemia predic-
tion model using four data items, but its ROC curve was 
only 0.745 [14]. Literature [15] provided new quantitative 
markers for the early detection and prognosis prediction 
of hyperuricemia using a stacked multimodal machine 
learning model. This model has shown satisfactory per-
formance on the training set, internal test set, and exter-
nal test set. Wang YJ and others applied artificial neural 
network algorithms to the construction of hyperurice-
mia models, achieving relatively ideal predictive results 
[16]. Literature [9] used the Extreme Gradient Boosting 
(XGBoost) algorithm to establish a model predicting the 
risk of hyperuricemia in people taking low-dose aspirin, 
demonstrating good predictive accuracy.

The aforementioned studies have demonstrated the 
immense potential of machine learning in disease risk 
prediction, but they also have limitations. For instance, 
due to data quality issues, datasets may be biased, leading 
to lower model accuracy. Additionally, predictive models 
trained with deep learning algorithms require significant 
resource demands and energy consumption. Moreover, 
most current risk prediction models for hyperuricemia 
include both complete blood routine and biochemical 
indicators as input features. Biochemical tests are more 
time-consuming and expensive, whereas blood routine 
tests are a more common and widely applied method of 
testing that can be easily conducted in all medical insti-
tutions [17]. This suggests that the potential for predic-
tion using only blood routine data has not yet been fully 
explored. Therefore, this study constructed a hyperurice-
mia risk prediction model that utilizes machine learning 
algorithms and relies solely on routine blood test data, 
incorporating PSO for autonomous optimization of the 
machine learning models [18]. The constructed model 
can quickly and accurately assess the risk of hyperurice-
mia based solely on routine blood test data. Additionally, 
the XAI, an interpretable machine learning technol-
ogy, was introduced to conduct a sensitivity analysis of 
the influencing factors in the multivariate prediction of 
hyperuricemia, revealing the key influencing factors of 
hyperuricemia [19].

The main contributions of this paper are as follows.

 	• For the risk prediction of hyperuricemia, this paper 
has conducted numerous comparative experiments 
using benchmark and ensemble models and 
ultimately proposes a fusion model based on PSO 
and ensemble learning [20]. The proposed model 
shows a good performance on real datasets, with an 
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11% increase in predictive accuracy compared to the 
latest models.

 	• The proposed model relies solely on routine blood 
test data, reducing detection costs and shortening 
the detection cycle, providing a new technological 
means for the timely diagnosis of high-risk 
populations for hyperuricemia.

 	• Real datasets (including physical examination and 
diagnostic data) were used to implement modeling 
and testing of the prediction model. At the same 
time, explainable artificial intelligence methods, 
including SHAP and LIME, were introduced to 
enhance the transparency and credibility of the 
prediction model, making it more persuasive.

 	• This paper has developed a health portrait platform 
that integrates the proposed disease risk prediction 
model, achieving real-time online health risk 
assessment.

Related works
Disease prediction helps to achieve early intervention of 
diseases and control their progression, possessing high 
application value. As a result, it has garnered widespread 
attention from researchers and has yielded a plethora of 
research outcomes [21, 22].

Traditional disease risk prediction is mainly based on 
the Cox proportional hazards regression model. For 
example, Wang et al. establish a risk prediction model 
based on the Cox model for stroke and death in atrial 
fibrillation patients based on the Framingham Heart 
Study [23]. The H-L statistics of the stroke prediction 
model and the stroke or death prediction model are 7.6 
and 6.5, respectively, with the AUC of the stroke pre-
diction model being 0.66 and the AUC of the stroke or 
death prediction model being 0.70. Khosla et al. used 
feature selection and machine learning methods to pre-
dict the incidence of stroke within 5  years [24]. Using 
L1 regularized logistic regression for feature selection 
and Support Vector Machine (SVM) for prediction, the 
average test AUC using 10-fold cross-validation is 0.764, 
which is better than the L1 regularized Cox model. Kun 
Lv and colleagues constructed diabetes risk prediction 
models using various machine learning methods and 
ultimately found that the model based on logistic regres-
sion performed the best [25]. On the validation set, the 
model achieved an AUC of 0.899, a sensitivity of 0.850, 
and a specificity of 0.811. Through the analysis of feature 
importance, it was revealed that BMI, age, and gender are 
important factors in the risk stratification of diabetes.

In the field of hyperuricemia prediction, researchers 
have also proposed several valuable reference models. For 
example, Lee et al. explore machine learning methods for 
hyperuricemia prediction models based on basic health 
check test results [26]. Under the maximum sensitivity 

criterion, the naive Bayes (NB) algorithm exhibits the 
highest sensitivity (0.73), followed by the Random For-
est (RF) algorithm (0.66); Under the maximum balanced 
classification rate (BCR) standard, the RF algorithm 
exhibits the highest BCR (0.68), followed by the NB 
algorithm (0.66). Compared with the traditional logistic 
regression model (AUC = 0.568), the NB (AUC = 0.669) 
and RF (AUC = 0.775) models showed significantly bet-
ter predictive performance (p < 0.001). Hou et al. con-
structed a hyperuricemia prediction model to assist in 
early prevention and screening [4]. The study analyzed 
the risk factors of gender and age groups through Pear-
son correlation analysis, binary logistic regression, and 
ROC curve analysis. The results showed that total protein 
(TP), low-density lipoprotein cholesterol (LDL-C), and 
glucose (GLU) were risk factors for hyperuricemia, and 
the AUC value of the SVM-based model on the valida-
tion set was 0.875. Zheng et al. developed a predictive 
model using an occupational health examination dataset 
to predict the risk of hyperuricemia in steelworkers [27]. 
The study used three models: logistic regression, con-
volutional neural network (CNN), and XG Boost, and 
selected six influencing factors through LASSO regres-
sion. Ultimately, the XG Boost model performed the best 
in discrimination, calibration, and clinical applicability. 
Based on dietary information, the literature [28] uses 
logistic regression models to screen for dietary risk fac-
tors related to hyperuricemia. Then, the Artificial Neural 
Network (ANN) is used to construct a prediction model, 
and the accuracy of the model is evaluated through ROC 
curve analysis. The results showed that the area under 
the ROC curve of the ANN model on the training set and 
validation set was 0.827 and 0.814, respectively.

Since traditional machine learning methods do not per-
form satisfactorily in terms of accuracy for disease pre-
diction, many scholars have further proposed integrated 
methods to implement further optimization. Mahajan et 
al. studied the application of ensemble learning in disease 
prediction [29]. The study reviewed 45 articles published 
between 2016 and 2023 and found that although ensem-
ble learning methods (including Bagging, Boosting, 
Stacking, and Voting) are widely used in disease predic-
tion, the Stacking method performs the best in accuracy, 
however, with the lower frequency of usage than Bagging 
and Boosting. Zhang et al. developed an ensemble model 
for hyperuricemia based on a prospective health exami-
nation population [30]. The research results indicate that 
15 important features were selected from 23 clinical vari-
ables. The AUC of the stacked ensemble model is 0.854, 
which is superior to the other three models (Support 
Vector Machine, Decision Tree C5.0, and XGBoost, with 
AUC of 0.848, 0.851, and 0.849, respectively).

The aforementioned studies have certain limitations 
when using machine learning or integrated models for 
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disease prediction. These mainly include: 1) Not using 
real datasets for modeling, which leads to models that 
cannot be used in practical applications or have insuffi-
cient prediction accuracy; 2) Low data quality or obvious 
biases in the datasets resulting in low model accuracy; 3) 
The vast majority of hyperuricemia prediction models 
require a large number of detection indicators, including 
some biochemical indicators, leading to high costs and 
long prediction cycles. In contrast, this paper uses real 
detection data from hospitals and achieves data balance 
through technical means. It relies solely on routine blood 
test indicators, making the method simple and easy to 
promote, and it improves prediction accuracy through 
integrated learning.

Experimental framework
Overview of the technical framework
Figure 1 shows the overview of the technical framework. 
First, the collected data is preprocessed [31]. To address 

the issue of class imbalance in the dataset, we used over-
sampling methods on the dataset. The dataset is divided 
into a training set and a test set in a ratio of 7:3 (random_
state = 42) [32]. The training set is used for 10-fold cross 
validation (random_state = 0) training of the model, and 
the test set is used for the final model evaluation [33, 34]. 
To filter features, a univariate analysis of factors affect-
ing hyperuricemia is performed, and factors with statis-
tical significance (P < 0.05) from the univariate analysis 
are used as independent variables, with the occurrence 
of hyperuricemia as the dependent variable for Logistic 
regression multivariate analysis [35]. For NULL values in 
the independent variables, we used multiple imputations 
to fill in the missing values. Next, we conducted a com-
parison on several baseline machine learning methods, 
including Logistic Regression (LR), RF, SVM, Deep Neu-
ral Network (DNN), and XGBoost and utilized the PSO 
algorithm to optimize the parameters [36, 37]. Through 
performance evaluation, the best baseline model was 

Fig. 1  Overview of the technical framework
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selected, and the accuracy of the proposed model was 
enhanced by the model ensemble method. Finally, by 
introducing the XAI, we explained the relationship 
between each feature and the risk of disease, which helps 
to better understand how the model makes decisions 
[38, 39]. Based on model validation and optimization, we 
developed a health portrait platform, which is equipped 
with the predictive algorithms proposed in this paper 
[40]. The platform can manage the health data of regis-
tered users in a unified manner and make disease risk 
predictions.

DataSet processing
The data used in this study is sourced from hospitals 
in two regions of Zhejiang. The data is categorized and 
stored in two separate tables, with the physical examina-
tion table containing a total of 30,606,676 physical exami-
nation records and the disease table containing a total of 
1,958,752 disease records. The dataset includes 26 rou-
tine blood test features, specifically: White Blood Cells 
(WBC), Red Blood Cells (RBC), Hemoglobin (HGB), 
Packed Cell Volume (PCV), Mean Corpuscular Volume 
(MCV), Mean Corpuscular Hemoglobin (MCH), Mean 
Corpuscular Hemoglobin Concentration (MCHC), 
Platelet Count (PLT), Lymphocyte Percentage (LYM), 
Neutrophil Percentage (NEUT%), Monocyte Percentage 
(MONO%), Basophil Percentage (BASO%), Eosinophil 
Percentage (EOS%), Lymphocyte Absolute (LYM#), Neu-
trophil Absolute (ANC), Monocyte Absolute (MONO#), 
Basophil Absolute (BASO#), Eosinophil Absolute 
(EOS#), Red Cell Distribution Width - CV (RDW-CV), 
Red Cell Distribution Width Standard Deviation (RDW-
SD), Platelet Distribution Width (PDW), Mean Platelet 
Volume (MPV), Platelet Crit (PCT), Age (AGE), Gender 
(SEX), and Weight (WEIGHT). Table  1 shows the rele-
vant features of the data in this paper.

To better construct the predictive model, it is necessary 
to preprocess the dataset. In this study, the first step is 
to complete the data cleaning by removing sensitive data 
and newline characters and replacing parentheses. Then 
it uses the pandas.merge and pivot_table functions in 
Python to join the two tables and obtain a pivot table.

After preprocessing, a total of 144 cases with hyper-
uricemia and 6,271 cases without hyperuricemia were 
obtained.

Due to the severe class imbalance in the dataset, this 
paper proposed a SMOTE-based oversampling method 
to make the number of positive and negative samples 
equal. The SMOTE-based data processing algorithm is 
shown in Algorithm 1.

Algorithm 1 SMOTE-based Data Processing Algorithm
1: �Input: Medical Examination Data Sheet T1, Patient 

Information Form T2
2: �Output: Balanced data S that can be input into the 

model
3: �Read in the data tables T1 and T2 and perform some 

preprocessing
4: Merge T1 and T2 on common keys
5: �Specify row index name and column index name to 

obtain pivot table
6: �Filter pivot table to select relevant blood routine 

columns
7: �Apply multiple interpolation methods to fill in miss-

ing values
8: Apply SMOTE to handle imbalanced datasets
9: �Separate the processed data into features X and 

labels Y
10: Return balanced data S (X, Y)

Feature analysis
This paper selects the t-test method to perform univari-
ate analysis on the dataset to identify factors affecting 
hyperuricemia [41, 42]. The results of the t-test can deter-
mine whether there are significant differences between 
the data (through P-values), but it cannot explain the 
actual magnitude of the differences. Furthermore, the 
test results are easily influenced by the sample size: a 
smaller sample may lead to insignificant results, while a 
larger sample may amplify minor differences. Cohen’s d 
is a standard- ized effect size that is not directly affected 
by sample size and can better reflect the actual size of the 
differences. Therefore, this paper combines Cohen’s d 
values to rep- resent the differences in physical examina-
tion indicators between the hyperuricemia group and the 
non-hyperuricemia group. And its definition is shown in 
Eq. (1):

	
Cohen′s = (x1 − x2)

s
� (1)

Where x1 and x2 are the means of the two populations, 
and s is the standard deviation of the population. From 
the analysis results of Table  2, it can be seen that the 
characteristics of NEUT%, ANC, WEIGHT, MONO#, 
BASO#, EOS#, LYM, RDW-CV, HGB, AGE, and SEX 
are statistically significant (P < 0.05) in the comparison 
between the two categories. The top 5 features with sig-
nificant differences are WEIGHT, SEX, BA#, ANC, and 

Table 1  Overview of data related features
Blood routine 
indicators

WBC, RBC, PCV, NEUT%, ANC, MONO%, 
MONO#, BASO%, BASO#, EOS%, EOS#, MCV, 
MCHC, MCH, LYM, LYM#, RDW-CV, RDW-SD, 
PDW, PCT, MPV, PLT, HGB

Sex Male (2824), Female (3591)
Age 0–18 (9), 19–35 (587), 36–60 (2190), 60+ (3629)
Hyperuricemia Yes (144), No (6271)
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RDW-CV, as shown in Fig. 2. Figure 3 shows the correla-
tion of the top 5 features, with the correlation coefficient 
ranging from 0 to 1, where a value closer to 0 implies a 
weaker correlation.

However, due to the differences in testing indica-
tors across various hospitals, there are a large number 
of NULL values in the aforementioned characteristics 
within the dataset. Since the LR method cannot handle 

NULL values, it is necessary to process these NULL val-
ues. In this paper, multiple imputation is used to address 
this issue.

Multiple imputation is a statistical technique for han-
dling missing values in a dataset, which mainly consists 
of three stages: imputation, analysis, and pooling. Firstly, 
the missing values are predicted and imputed using 
observed values, generating multiple complete duplicate 

Table 2  Univariate analysis results of factors affecting hyperuricemia
Indicators Hyperuricemia Non-hyperuricemia P Cohen_d t
WBC 5.93 ± 1.25 5.83 ± 1.66 0.744 0.061 0.327
RBC 4.62 ± 0.69 4.55 ± 0.52 0.121 0.131 1.548
PCV 41.16 ± 5.21 42.41 ± 4.12 0.108 0.302 −1.608
NEUT% 63.29(53.93,72.65) 61.01(52.06,69.96) < 0.05 0.254 2.974
ANC 4.36(2.63,6.09) 3.71(2.34,5.08) < 0.05 0.47 5.568
WEIGHT 70.26(58.33,82.19) 60.79(49.27,72.31) < 0.05 0.821 7.693
MONO% 5.75(3.68,7.82) 5.75(3.79,7.71) 0.962 0 −0.047
MONO# 0.38(0.22,0.54) 0.34(0.20,0.48) < 0.05 0.284 3.354
BASO% 0.42 ± 0.19 0.38 ± 0.28 0.193 0.144 1.302
BASO# 0.03 ± 0.01 0.02 ± 0.02 < 0.05 0.506 2.302
EOS% 2.43 ± 1.81 2.32 ± 2.04 0.535 0.054 0.621
EOS# 0.16 ± 0.13 0.14 ± 0.13 < 0.05 0.154 1.991
MCV 93.19 ± 5.97 92.90 ± 5.65 0.558 0.051 0.585
MCHC 329.01(317.79,340.23) 332.25(323.83,340.67) 0.229 0.38 1.203
MCH 30.65 ± 2.27 30.46 ± 2.15 0.298 0.088 1.04
LYM 28.16(19.75,36.57) 30.57(22.14,39.00) < 0.05 0.286 −3.35
LYM# 1.84(1.24,2.44) 1.80(1.14,2.46) 0.476 0.061 0.712
RDW-CV 28.24 ± 16.26 22.54 ± 14.89 < 0.05 0.381 4.131
RDW-SD 43.02 ± 8.71 41.23 ± 10.44 0.051 0.172 1.951
PDW 16.04 ± 0.92 15.98 ± 1.32 0.604 0.046 0.519
PCT 0.20 ± 0.06 0.20 ± 0.06 0.997 0 0.004
MPV 10.31 ± 1.35 10.27 ± 1.44 0.744 0.028 0.326
PLT 196.85(140.04,253.66) 198.98(137.87,260.09) 0.682 0.035 −0.409
HGB 140.88(122.20,159.56) 138.09(122.33,153.85) < 0.05 0.176 2.053
AGE 63.96(49.44,78.48) 60.70(45.73,75.67) < 0.05 0.218 2.585
SEX 1.31 ± 0.46 1.57 ± 0.50 < 0.05 0.525 −6.234

Fig. 2  The top 5 features with significant differences between hyperuricemia and normal samples
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datasets. Secondly, each duplicate dataset is analyzed 
using appropriate statistical methods. Finally, the best 
imputation method is selected based on model scoring, 
and the analysis results are pooled to obtain the final sta-
tistical inference. After imputation, factors and indicators 
with statistical significance are assigned values for mul-
tivariate logistic regression analysis. The gender variable 
is assigned with values of male = 1 and female = 2, while 
all other variables can be substituted with their original 
values.

Table 3 displays the results of the multivariate logistic 
regression. It can be observed from the table that LYM, 

NEUT%, ANC, RDW-CV, AGE, SEX, and WEIGHT are 
associated with the prevalence of hyperuricemia.

Model construction
Baseline model selection
To find the most suitable risk prediction model for hyper-
uricemia, this paper selects five machine learning meth-
ods as the baseline models, including RF, XGBoost, SVM, 
LR, and DNN [43, 44].

LR is a widely used linear classification algorithm that 
converts outputs to probabilities through the sigmoid 
function, making it highly suitable for binary classifica-
tion problems. RF is an ensemble learning method that 
constructs a multitude of decision trees to perform classi-
fication or regression tasks. RF mitigates the risk of over-
fitting by training each decision tree independently on 
random subsets of samples and features, and it enhances 
the overall model’s accuracy and robustness by aggre-
gating the predictions of these trees [45]. XGBoost is an 
optimized gradient-boosting decision tree algorithm that 
improves upon the traditional Gradient Boosting Deci-
sion Tree (GBDT) by increasing the training speed and 
the model’s generalization ability. SVM is a powerful lin-
ear classifier that uses various kernel functions, such as 
linear, polynomial, and radial basis functions, to trans-
form the original feature space into a high-dimensional 
space, and it completes the classification task by finding 

Table 3  Multivariate logistic regression analysis of hyperuricemia
Indicators Coef Std_err Z P 95%CI
CONST 4.868 6.625 0.735 0.462 [−8.117 17.854]
HGB −0.003 0.006 −0.416 0.677 [−0.015 0.010]
LYM −0.133 0.069 −1.934 0.053 [−0.269 0.002]
NEUT% −0.155 0.074 −2.093 0.036 [−0.299 − 0.010]
ANC 0.477 0.126 3.782 0.000 [0.230 0.724]
MONO# −1.804 1.144 −1.577 0.115 [−4.047 0.438]
BASO# −0.454 3.439 −0.132 0.895 [−7.194 6.286]
EOS# −1.724 1.126 −1.532 0.126 [−3.930 0.482]
RDW-CV 0.021 0.007 3.059 0.002 [0.008 0.035]
AGE 0.037 0.008 4.640 0.000 [0.021 0.052]
SEX −0.428 0.238 −1.799 0.072 [−0.894 0.038]
WEIGHT 0.031 0.007 4.425 0.000 [0.017 0.045]

Fig. 3  Heat map of the features
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the optimal separating hyperplane in this high-dimen-
sional space. DNN consists of an input layer, hidden lay-
ers, and an output layer, with each layer having numerous 
neurons that receive inputs from other neurons. By 
adjusting the weights, the influence of inputs on the 
neurons is altered. Neural networks approximate com-
plex functions through multiple nonlinear hidden layers. 
DNN calculates the error between the output layer and 
the true labels and propagates the error back to each lay-
er’s neurons, updating the neuron weights and bias terms 
to minimize the prediction error.

Parameter tuning for the baseline models
Parameter tuning is an important way to improve the 
performance of machine learning models, as it can help 
the models achieve better generalization capabilities 
thus significantly enhancing the predictive accuracy [46]. 
This paper applies grid search and two biological heuris-
tic methods for parameter adjustment of the aforemen-
tioned learning models.

Grid search determines the optimal parameters by try-
ing all possible combinations of parameters, which is a 
simple and effective method for hyperparameter tuning 
and is widely used in machine learning parameter tuning. 
Biological heuristic algorithms are a type of optimization 
algorithm that simulates mechanisms such as natural 
selection, adaptation, and evolution in biological systems. 
They possess strong global search capabilities and good 
adaptability, providing a powerful auxiliary tool for the 
parameter tuning of machine learning models, especially 
when dealing with high-dimensional, complex, non-con-
vex, and multi-objective optimization problems. During 
the training process, this paper uses two types of bio-
logical heuristic algorithms including PSO and Genetic 
Algorithm (GA) to search for the optimal model param-
eters. Following is a brief introduction of PSO and GA 
algorithms.

PSO is an evolutionary computation technique to find 
the optimal solution through collaboration and informa-
tion sharing among individuals in the group. PSO has 
been widely applied in function optimization, neural 
network training, and other application fields. A group 
of random particles is initialized in the PSO algorithm 
and searches for the optimal solution independently. The 
individual extreme value namely pbest is shared with 
other particles in the swarm, and the best individual 
extreme is found and used as the current global optimal 
solution (gbest) for the entire swarm. All particles in the 
swarm update themselves by tracking the two “extremes” 
(pbest, gbest).

Equations (2) and (3) show the update method of PSO.

	 vi = vi + c1 × rand() × (pbesti − xi) + c2 × rand() × (gbesti − xi)� (2)

	 xi = xi + vi� (3)

In Equation (2), vi represents the current velocity of the 
particle, c1 and c2 are learning factors, rand() is a random 
number between 0 and 1, and xi is the current position 
of the particle. Equation (2) consists of three parts: the 
memory term, the self-cognition term, and the social 
cognition term. The memory term comes from the 
velocity and direction of the last iteration, and the self-
cognition term is a vector from the current point to the 
particle’s own best point, indicating the part of the par-
ticle’s movement that comes from its own experience, 
the social cognition term is a vector from the current 
point to the swarm’s best point, indicating the collabora-
tive cooperation and knowledge sharing among particles. 
Particles decide their next movement through their own 
experience and the best experience among their peers.

GA is another type of biological heuristic algorithm. It 
achieves population optimization by simulating opera-
tions such as selection, crossover, and mutation in the 
biological evolution process, making it suitable for com-
plex global optimization problems. The core elements 
of the genetic algorithm include chromosome encod-
ing, fitness function, and genetic operators. Chromo-
some encoding maps the solution space of a problem 
onto chromosomes, and the fitness function reflects the 
quality of individual solutions. Genetic operators include 
selection operators, crossover operators, and mutation 
operators. The selection operator selects excellent indi-
viduals based on their fitness; the crossover operator 
generates new individuals through gene exchange; the 
mutation operator performs small probability mutations 
on individuals to increase population diversity.

Experimental environment deployment and model 
performance evaluation
The programming language used in this experiment is 
Python, and packages such as scikit learn, pytorch and 
xgboost were utilized. The CPU used is 11th Gen Intel 
(R) Core (TM) i7-11700 @ 2.50 GHz 2.50 GHz, the GPU 
is NVIDIA GeForce RTX 3060, and the memory is 32GB.

The selected feature values and processed training data 
were incorporated into five machine learning algorithms 
(RF, XGBoost, SVM, LR, and DNN) to construct risk pre-
diction models for hyperuricemia. These models were 
then applied to the validation data set, and the perfor-
mance of different models was evaluated using common 
assessment metrics including AUC, accuracy, recall, pre-
cision, and F1 score [47].

Table 4 displays the accuracy scores of 10 folds for the 
models. Overall, The combination of the xgboost clas-
sifier and ADASYN method performs better in the first 
few folds, while the combination of DNN and ADASYN 
performs better in the later stages. Table  5 shows the 
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results of the validation set using the data balancing tech-
nology after 10-fold on the metrics mentioned above. 
The results indicate that the XGBoost model combined 
with SMOTE is the best one, along with the highest 
scores in AUC (0.997), accuracy (0.973), Recall (0.971), 
and f1(0.973). And except for SVM, the others that apply 
SMOTE achieve better results than ADASYN.

Table  6 shows the results of using different param-
eter tuning methods (grid search, GA, and PSO) for 
the XGBoost model, indicating that the PSO algorithm 
achieves the best results in AUC, ACC, and P indi-
cators. Therefore, in this paper, PSO was selected as 
the model parameter tuning method. The PSO-based 
parameter optimization algorithm for machine learn-
ing models is shown in Algorithm 2. The initialization Pi 
of the particle swarm is a randomly selected point, and 
the objective function and fitness evaluation are both f 
(Pi) = − roc_auc_score(ytest, ypred(Pi)), with a stopping cri-
terion of reaching the maximum iteration count of 100. 

The optimal parameters for each model given by the PSO 
are shown in Table  7. Figures  4 and 5 display the ROC 
curves and precision-recall curves.

Table 4  Accuracy of each model for 10 folds
Models Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Fold9 Fold10
Lr + smote 0.761 0.757 0.779 0.759 0.739 0.764 0.789 0.776 0.773 0.740
lr + adasyn 0.759 0.759 0.745 0.754 0.750 0.746 0.756 0.764 0.760 0.748
Svm + smote 0.916 0.934 0.918 0.900 0.895 0.928 0.936 0.927 0.909 0.922
Svm + adasyn 0.934 0.924 0.912 0.941 0.922 0.932 0.926 0.934 0.926 0.927
Rf + smote 0.927 0.919 0.923 0.921 0.913 0.923 0.942 0.935 0.934 0.912
Rf + adasyn 0.923 0.940 0.935 0.943 0.934 0.942 0.937 0.930 0.924 0.922
Xgboost + smote 0.962 0.974 0.969 0.964 0.951 0.967 0.969 0.964 0.970 0.962
Xgboost + adasyn 0.969 0.974 0.975 0.974 0.970 0.971 0.969 0.966 0.971 0.975
Dnn + smote 0.901 0.967 0.965 0.956 0.968 0.976 0.968 0.986 0.976 0.981
Dnn + adasyn 0.918 0.965 0.964 0.970 0.968 0.979 0.984 0.986 0.991 0.984

Table 5  Performance comparison of five machine learning 
models with data balancing technology
Models Auc Acc P R F1
LR + smote 0.855 0.777 0.743 0.846 0.791
LR + adasyn 0.844 0.742 0.678 0.922 0.781
SVM + smote 0.972 0.921 0.921 0.921 0.921
SVM + adasyn 0.975 0.927 0.914 0.943 0.928
RF + smote 0.984 0.934 0.927 0.941 0.935
RF + adasyn 0.982 0.933 0.929 0.937 0.932
DNN + smote 0.958 0.958 0.947 0.969 0.954
DNN + adasyn 0.938 0.938 0.917 0.963 0.960
XGBoost + smote 0.997 0.973 0.975 0.971 0.973
XGBoost + adasyn 0.995 0.972 0.986 0.957 0.971

Table 6  Performance comparison of optimization algorithms applied to XGBoost
optimization Auc Acc P R F1 parameters
PSO 0.997 0.973 0.975 0.971 0.973 n_particles = 10,c1 = 0.5,c2 = 0.3,w = 0.9,max_iters = 100
GridSearch 0.997 0.972 0.970 0.976 0.976 scoring = f1,cv = 5,n_jobs = − 1,verbose = 1
GA 0.996 0.969 0.969 0.968 0.968 n = 10,max_gen = 100,pc = 0.7,pm = 0.2

Table 7  Model parameter settings
Model Parameters
Logistic max_iter = 1000,C = 100
SVM kernel = ‘rbf’, gamma = 0.1, C = 1.0,probability = True
RF n_estimators = 106, max_depth = 12, max_features = 0.569, 

min_samples_leaf = 3,min_samples_split = 8
XGBoost max_depth = 8,learning_rate = 0.2,n_estimators = 171, 

subsample = 0.9,colsample_bytree = 0.8
DNN batch_size = 32,epochs = 100,learning_rate = 0.001, 

optimizer = adam,loss = CrossEntropyLoss

Fig. 4  Comparison of ROC curves for various models
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Model optimization using model ensemble method
Model ensemble refers to the technique of integrating 
various machine learning models to enhance the accu-
racy and stability of predictions. Common model ensem-
ble methods include Bagging, Boosting, Stacking, and 
Voting [48]. The baseline models mentioned earlier, RF 
and XGBoost, belong to the Bagging and Boosting meth-
ods, respectively. Therefore, this section only applies the 
other two methods, Stacking and Voting, to improve pre-
diction accuracy.

Voting balances the prediction results of multiple 
models through probability information. Combining 
the model comparison results from Section  3.3, the LR 
model performed the worst, while the XGBoost model 
performed the best. Thus, weights of 0.15, 0.25, and 0.2 
were assigned to the LR, XGBoost, and the other three 
models, respectively. Stacking combines multiple basic 
learners and uses a meta-learner to optimize the final 
prediction, thus fully utilizing the diversity of different 
models and improving overall prediction performance. 
In this section, the aforementioned five models are used 
as basic learners, and logistic regression is chosen as the 
meta-learner.

Table 8 shows the performance of the Voting and Stack-
ing ensemble models. After applying the model ensemble 
method, although the AUC decreased, the other four 
indicators improved to varying degrees. Among them, 
Stacking achieved the highest ACC, P, and F1 values, 
while Voting achieved the highest R-value.

Algorithm 2 PSO-based Optimization Algorithm for 
Machine Learning Models

1:  �Input: Dataset T after SOMTE, Optimized model 
M, hyperparameter ranges R, number of particles 
n_particles

2:  Output: Model M_best using optimal parameters
3:  for i = 1 to n_particles do
4:        �Initialize particles’ positions Xi within the hyper-

parameter ranges R
5:        Initialize particles’ velocities Vi to zero
6:  end for
7:  while not converged do
8:       for each particle do
9:  �   �   Evaluate the fitness of each particle using 

model M and dataset T
10:        �  Update personal best position for each particle
11:      end for
12:      Update global best position among all particles
13:      for i = 1 to n_particles do
14: �     �  Update velocity Vi based on personal best 

and global best positions
15:          Update position Xi using velocity Vi
16:      end for
17:    end while
18:   Apply optimal hyperparameters to the model M
19:   return M_best

Table 8  Performance of the voting and stacking ensemble models
Ensemble models AUC (95%CI) Accuracy (95%CI) Precision (95%CI) Recall (95%CI) F1 (95%CI)
Stacking 0.996(0.995,0.998) 0.978(0.973,0.982) 0.980(0.972,0.985) 0.976(0.969,0.982) 0.978(0.972,0.982)
Voting 0.996(0.994,0.997) 0.973(0.968,0.978) 0.961(0.952,0.969) 0.987(0.982,0.992) 0.974(0.968,0.978)

Fig. 6  Confusion matrix of stacking model

 

Fig. 5  Comparison of precision-recall curves for various models
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A confusion matrix helps visualize the output of a clas-
sifier. It depicts a table of accurate detections and misde-
tections of an ML model. Figure  6 shows the confusion 
matrix for our best model.

The training and testing data used in this paper come 
from real data from multiple hospitals in two regions of 
Zhejiang Province. However, due to the limitations of the 
dataset, there may be concerns about the generalization 
and universality of the model. To address this, we used 
the Mostly (http://www.mostly.ai) synthetic data ​g​e​n​e​r​a​
t​i​o​n technique to generate an equal amount of data for 
testing based on the data characteristics of the validation 
set. After testing, the final accuracy of the model reached 
0.820, with an AUC value of 0.879, confirming that the 
model still performs well on the generated data.

Performance comparison with state-of-the-art models
To demonstrate the advantage of the fusion model pro-
posed in this paper, we also compare its performance 
with several other state-of-the-art models used for the 
risk prediction of hyperuricemia.

The comparison models selected in this paper are 
from references [4, 9, 11, 27, 28, 49] and [5]. Hou et al. 
[4] constructed a hyperuricemia risk prediction model 
based on the SVM method and included fifteen variables 
in the model for prediction through the LR technique. 
Zheng et al. [27] used the LASSO method to incorporate 
six variables into XGBoost to construct a hyperuricemia 
risk prediction model. Zeng et al. [28] selected fourteen 
variables through the LR analysis and then generated a 
hyperuricemia risk prediction model based on the ANN 
method. Ma [9] also selected ten variables through the 
LR and subsequently constructed a prediction model 
based on the Bayesian method. Yang’s model [11] hyper-
uricemia risk prediction model, based on LR technology, 
included four feature variables through LASSO analysis. 
Chen et al. [49] primarily constructed was based on the 
XGBoost method, which included 14 variables. Gao et al. 
[5] designed a hyperuricemia risk prediction model based 
on the RF method, incorporating 21 variables.

Table  9 shows the comparison results on meth-
ods and performance. It can be seen that compared to 

previous studies, our model achieved better results, with 
an improvement of over 11% in predictive accuracy.

Model interpretability
Medical issues are directly related to patient’s health and 
life safety, making it a field that demands high accuracy 
and interpretability. Medical personnel need to under-
stand and interpret the diagnostic results produced by AI 
models to ensure the accuracy and reliability of the diag-
nostic process.

To enhance the interpretability, this paper uses the 
XGBoost model to obtain the feature importance for the 
risk of hyperuricemia. The feature importance scores 
in XGBoost can be calculated using three methods: (1) 
Weight, indicating the number of times a feature is used 
as a splitting feature in decision trees; (2) Gain, repre-
senting the contribution of a feature to the performance 
gain of the model during the split; and (3) Coverage, 
indicating the proportion of data samples covered by 
the feature when it is used for splitting. This paper uses 
the weight-based feature importance ranking, and Fig. 7 
plots the results. The features in the figure are sorted in 
descending order of importance. Among all the features, 
age is the most important, significantly impacting the 
prediction results, while gender has the smallest impact.

Table 9  Comparison with state-of-the-art methods
Papers Feature optimization Number of features Classifier Accuracy AUC XAI
Hou et al. [4] Lr analysis 15 SVM 0.819 0.875 No
Zheng et al. [27] LASSO 6 XGBoost 0.881 0.733 No
Zeng et al. [28] Lr analysis 14 ANN 0.800 0.814 No
Ma [9] Lr analysis 10 Bayesian - 0.740 No
Yang [11] LASSO 4 Lr 0.726 0.813 No
Chen et al. [49] - 14 XGBoost 0.730 0.820 No
Gao et al. [5] - 21 Rf - 0.739(male) No

0.818(Female)
Proposed model Lr analysis 7 Stacking 0.978 0.978 Yes

Fig. 7  Feature importance ranking

 

http://www.mostly.ai
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Using XGBoost to get feature importance is quick and 
simple, thus it is suitable for a preliminary assessment 
of feature importance. However, it has some shortcom-
ings. For example, when features are highly correlated, 
XGBoost may overestimate or underestimate the impor-
tance of some specific features. This is because informa-
tion may be double-counted, leading to inaccuracies in 
the importance of features with multicollinearity. Addi-
tionally, XGBoost feature evaluation often considers the 
impact of features in isolation, without assessing the 
interaction effects between features, neglecting feature 
interactions. Therefore, a more precise and fine-grained 
explanation method is needed when decisions affect indi-
vidual disease diagnosis.

We implemented several XAI methods including SHAP 
and LIME to reach the goal. SHAP is based on the Shap-
ley value from game theory and is used to measure the 
contribution of each feature to the model’s prediction, 
thereby helping people understand how the model makes 
decisions [50]. LIME is an algorithm that interprets clas-
sifier or regressor predictions by locally approximating 
them with interpretable models. It analyzes the contribu-
tion of features by adjusting feature values and observ-
ing their impact on the output. The output of LIME is a 
set of explanations representing the contribution of each 
feature to the prediction of a single sample, which aids in 
understanding the model’s predictions.

Figure 9 is a feature density scatter plot generated using 
the SHAP method. It indicates that WEIGHT, ANC, 
RDW-CV, NEUT%, LYM, and AGE significantly impact 

the model output. By examining the SEX row, we found 
that the SHAP values for males (blue points) slightly 
lean towards the positive side, while the SHAP values 
for females (red points) slightly lean towards the nega-
tive side. This suggests that in the model’s predictions, 
males are slightly more likely to be predicted as patients, 
whereas females are slightly more likely to be predicted 
as healthy Individuals. Figure  8 illustrates the feature 
importance of our best model for a specific instance 
based on the LIME method. The horizontal bars repre-
sent the contribution of each feature to the prediction; 
the length of the bars indicates the weight of the feature 
in the model, and the color represents the direction of 
the impact (orange for positive, blue for negative). The 
plot also includes the actual predicted value, the model’s 
predicted value, and the difference between them.

In summary, Fig. 7 provides a preliminary assessment 
of feature importance. Figure  8 offers detailed predic-
tion information for a specific sample, including feature 
values and their specific contributions to the prediction 
outcomes. Figure 9, on the other hand, provides a global 
perspective, demonstrating the impact of features from 
all samples in the test set on the model. It can be observed 
from Figs.  8 and 9 that for both individual and global 
samples, SEX and WEIGHT significantly contribute to 
the model’s predictions, ANC makes a certain contribu-
tion, and AGE contributes less. The above conclusion is 
consistent with humans suffering from hyperuricemia. 
Medically, it is believed that estrogen has an excretory 
effect on uric acid, which is why women are less likely to 
develop hyperuricemia compared to men. Obesity is usu-
ally related to increased uric acid synthesis and reduced 
renal excretion. However, it is noteworthy that in Fig. 7, 
the contribution of SEX is the smallest, whereas the con-
tribution of AGE is the largest. This paper believes that 
the root cause of inconsistency lies in the different cal-
culation methods and concerns of interpretation meth-
ods. The feature importance of xgboost mainly reflects 
the role of features in the process of model construction 
and is affected by the three calculation methods men-
tioned above. SHAP and LIME provide explanations 
from the perspective of contribution degree, locality, or 
globality of model output, especially considering feature 

Fig. 9  SHAP feature density scatter plot

 

Fig. 8  LIME plot
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interaction and nonlinear structure of the model, which 
can better reveal the true relationship between features 
and prediction results. The common point is that both 
ANC and WEIGHT have a significant impact.ke

Disease risk prediction platform
This paper has conducted a predictive model for hyper-
uricemia, and we hope to apply it in practical scenarios, 
allowing more patients to receive timely warnings and 
interventions before the onset or rapid progression of the 
disease. To this end, we have developed a Health Portrait 
Platform, which has the core functionality of incorporat-
ing disease risk prediction models for analysis based on 
input features, and the main features such as storage and 
management of residents’ electronic health records, dis-
ease risk assessment and prediction, early cancer screen-
ing, online diagnosis and treatment, and a health mall.

Till now, the platform has covered data for 650,000 per-
manent residents of Lin’an, Hangzhou, China with about 
10,000 users, and the number of visitors has reached 
approximately 100,000. Figure 10 displays the homepage 
and disease risk assessment page of the Health Portrait 
platform’s user interface. The homepage shows the user’s 
current diseases and potential risk diseases. The disease 
risk assessment page will provide a detailed display of the 
low-, medium-, and high-risk disease lists predicted by 
the model.

Conclusion and future work
This paper constructs electronic health records based 
on the physical examination and patient treatment data 
from the hospitals in two districts of Hangzhou, China, 
and builds a hyperuricemia risk prediction model using 

machine learning algorithms. Experimental validation 
results indicate that this prediction model has good 
predictive accuracy, providing a reference for the early 
identification of risk factors for hyperuricemia. The 
innovations of this model include: 1) Addressing data-
set deficiencies through data processing and interpola-
tion; 2) Selecting the optimal model through preliminary 
comparative analysis of different AI algorithms, while 
using the PSO algorithm to fine-tune the parameters of 
the machine learning models, thereby improving accu-
racy and generalizability; 3) Modeling and analyzing 
based solely on routine blood test indicators, breaking 
the limitation of traditional hyperuricemia prediction 
that requires biochemical data, reducing screening costs, 
and facilitating large-scale implementation; 4) Develop-
ing a user-health profiling platform that visualizes health 
analysis results in an interactive chart format, enabling 
chronic disease screening for regional populations and 
individual residents.

Due to data privacy protection, this paper currently 
only has access to authorized physical examination and 
medical data from hospitals in two regions of Zheji-
ang, China. The limited data may affect the universality 
of the proposed prediction model. In addition, the data 
has a high imbalance rate, the sample size of hyperurice-
mia cases is too small, and the data synthesized after the 
application of the SMOTE method may distort the actual 
distribution. Moreover, using only routine blood tests for 
hyperuricemia risk assessment may have certain limita-
tions in practical applications.

Currently, we have embedded the model into a dis-
ease risk prediction platform that can obtain relevant 
data filled in by users and conduct accuracy assessments 
in a real-time manner. In the future, we will actively 
seek more relevant or public data to adjust and opti-
mize the model, enhancing its universality and general-
ization capabilities. Secondly, we will continue to refine 
the processes and parameters of the prediction model 
to improve its accuracy and performance. Lastly, we will 
keep enhancing the functionality of the disease risk pre-
diction platform to achieve broader applications.
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