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Abstract
This study aimed to identify key predictors for the severity of High Altitude Pulmonary Edema (HAPE) to assist 
clinicians in promptly recognizing severely affected patients in the emergency department, thereby reducing 
associated mortality rates. Multinomail logistic regression, random forest, and decision tree methods were utilized 
to determine important predictor variables and evaluate model performance. A total of 508 patients diagnosed 
with HAPE were included in the study, with 53 variables analyzed. Lung rales, sputum sputuming, heart rate, and 
oxygen saturation were identified as the most relevant predictors for the LASSO model. Subsequently, Multinomail 
logistic regression, decision tree, and random forest models were trained and evaluated using these factors on 
a test set. The random forest model showed the highest performance, with an accuracy of 77.94%, precision 
of 70.27%, recall of 68.22%, and F1 score of 68.96%, outperforming the other models. Further analysis revealed 
significant differences in predictive capabilities among the models for HAPE patients at varying severity levels. 
The random forest model demonstrated high predictive accuracy across all severity levels of HAPE, particularly 
excelling in identifying severely ill patients with an impressive AUC of 0.86. The study assessed the reliability and 
effectiveness of the HAPE severity scoring model by validating Multinomail logistic regression and random forest 
models. This study introduces a valuable screening tool for categorizing the severity of HAPE, aiding healthcare 
providers in recognizing individuals with severe HAPE, enabling prompt treatment and the formulation of suitable 
therapeutic approaches.

Objectives
 • Develop the first machine learning-based risk stratification model for High-Altitude Pulmonary Edema (HAPE).

• Utilize multiple physiological and clinical indicators to predict disease severity.
• To accurately find critically ill patients to reduce their mortality.
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Background
High altitude Pulmonary Edema (HAPE) is a life-threat-
ening condition that occurs due to rapid exposure to high 
altitude environments [6]. The incidence of HAPE has been 
on the rise with the increasing popularity of travel and out-
door sports, particularly when individuals quickly ascend 
to high altitudes [3, 8]. According to the United Nations 
World Tourism Organization (UNWTO), highland tour-
ism accounts for between 9% and 16% of total global inter-
national tourism [20]. Thus, early intervention is crucial in 

reducing mortality rates associated with HAPE as timely 
treatment can have a significant impact. However, inexperi-
enced physicians may face challenges in promptly diagnosing 
sever patients, leading to delays in treatment and potentially 
fatal outcomes. Reports indicate that delayed diagnosis and 
treatment of severe HAPE can result in mortality rates of 
40–50% [2, 15]. Therefore, the development of effective tools 
for early screening, risk stratification, and treatment based 
on risk assessment can greatly enhance patient outcomes 
and reduce deaths caused by treatment delays.

• Compare the performance of various machine learning algorithms, including Multinomail logistic regression, 
random forest, and decision tree, to identify the optimal model.

Research Gaps
 • Evaluate the effectiveness and clinical applicability of the developed model.
 • There is a scarcity of machine learning approaches specifically targeting risk stratification for HAPE;
 • Current methods for assessing the severity of HAPE are often subjective and lack precision;
 • There is an absence of objective and efficient tools for identifying individuals at risk of developing high 

altitude pulmonary edema.

Graphical Abstract
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Traditionally, the diagnosis of High Altitude Pulmo-
nary Edema (HAPE) has relied on clinical symptoms and 
imaging tests. However, assessing the severity of HAPE 
has often been subjective, lacking accurate screening 
tools for sever patients. In recent years, advancements 
in machine learning technology have offered a new 
approach to evaluating the risk level of HAPE [14]. By 
integrating various physiological parameters and clinical 
indicators, machine learning models can provide more 
precise and efficient risk assessment without adding to 
the patient’s burden [12]. While previous studies have 
explored machine learning applications in medical diag-
nosis, research on risk stratification modeling specifically 
for HAPE patients remains limited [10]. This study aims 
to address this gap by developing a machine learning-
based tool for risk stratification in HAPE. The tool will 
utilize multiple physiological and clinical indicators to 
predict disease severity and accurately identify sever 
patients. Through retrospective analysis of data from a 
larger sample of patients with High altitude pulmonary 
edema, three models - Multinomail logistic regression, 
random forest, and decision tree - were compared to 
determine the optimal model and assess its effectiveness 
in real-world clinical settings. This research aims to pro-
vide decision support for clinicians, ultimately enhanc-
ing the diagnostic and treatment standards, as well as the 
survival rates, of patients with severe HAPE.

Methodology
Study population
This retrospective study was conducted at the People’s 
Hospital of the Tibet Autonomous Region (TAR), which 
accounts for approximately 20% of the total outpatient 
emergencies and inpatient admissions among the seven 
municipal level hospitals in TAR. A total of 508 patients 
diagnosed with High altitude pulmonary edema between 
January 2014 and April 2022 were included in the study. 
Inclusion criteria were rapid ascent from the plains to the 
High altitude and first diagnosis of High altitude pulmo-
nary edema recorded in the electronic medical record 
(EMR) system. Exclusion criteria were pediatric cases 
and patients with chronic obstructive pulmonary disease, 
heart failure, or cancer.

Data collection and processing
Data collection: baseline medical information, including 
age, gender, ethnicity, body mass index, clinical symp-
toms (including fever, malaise, loss of appetite, nausea, 
sleep disorders, dizziness, sputum, chest tightness, short-
ness of breath, palpitations, blue lips, and sputuming up 
sputum); vital signs, including temperature, heart rate, 
SpO2, systolic blood pressure (SBP), and diastolic blood 
pressure (DBP), demographics (including elevation of 
residence, elevation of onset of disease, transportation to 

the High altitude, whether or not they bathed and caught 
a cold after entering the High altitude, and number of 
days/time of first symptoms after arrival at the High alti-
tude), and other information (history of smoking, alcohol 
consumption, hypertension, diabetes mellitus, chronic 
respiratory disease, and chronic liver disease). Variables 
with more than 20% missing data were excluded. For 
variables with less than 20% missing data, the random 
forest method was used for estimation [21].

In this study, we used a variety of statistical and 
machine learning methods to predict the severity of High 
altitude pulmonary edema (HAPE) and to select predic-
tor variables. These methods consisted of the following: 
(1) data prepossessing, where the dateset was divided 
into a training set and a test set and split in a ratio of 
80:20; (2) feature selection: Multinomail logistic regres-
sion models used recursive feature elimination (RFE) to 
select the most important predictor variables; random 
forest models used feature importance metrics to iden-
tify key features; and decision tree models selected the 
important variables through the structure of the tree; 
(3) model Training and Evaluation Multinomail logistic 
regression, random forest and decision tree models are 
used to train on the training set; accuracy is calculated 
from the prediction results on the test set; to evaluate the 
performance of the models, ROC curves and area under 
the curve (AUC) are used to measure the performance of 
each model on different categories.

Statistical analysis
This study used R language (V.3.6) for statistical analysis. 
General principles: All statistical tests were two-sided, 
and a P-value of less than or equal to 0.05 was consid-
ered to be statistically different from the difference being 
tested. The distribution of the data will be examined first, 
and non-normally distributed data will be treated, or spe-
cial analytical methods will be used. Quantitative indica-
tors will be described by calculating the mean, standard 
deviation, median, minimum, maximum, percentile, and 
categorical indicators will be described by the number 
of cases and percentage of each category. Comparisons 
between two general groups will be analyzed by appro-
priate methods depending on the type of indicator, 
group t-test or Wilcoxon rank test for quantitative data, 
chi-square test or exact probability method for categori-
cal data, and Wilcoxon rank test or CMH test for hierar-
chical data. The ROC curves of the Multinomail logistic 
regression model, random forest model, and decision 
tree model were compared to determine the differences 
in model performance in predicting HAPE of different 
severities. AUC is the key metric used to measure the 
performance of the model, and the closer the AUC value 
is to 1, the better the predictive ability of the model.
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Clinical diagnostic criteria for HAPE
Clinical diagnosis of high altitude pulmonary edema 
is based on diagnostic criteria (literature), including 
the following: (1) recent arrival at a high High altitude 
(above 2,500  m above sea level) or from a high altitude 
to a higher altitude area; (2) Symptoms: the presence of 
dyspnea, sputum, sputum sputum, headache, nausea, 
fatigue, etc., and in severe cases, resting dyspnea and tel-
angiectasia; signs: central cyanosis, shortness of breath, 
tachycardia, and rales audible on lung auscultation; (3) 
X-rays suggesting unilateral or bilateral infiltrative shad-
ows, which are often diffuse, irregularly distributed, or 
fused to form large, patchy shadows; and CT of the chest 
suggesting scattered flocculent, nodular, or reticulo-like 
shadows, and scattered flakes with milled-glass density, 
in both lungs); (4) Exclude other causes of acute respira-
tory distress syndrome, cardiogenic pulmonary edema 
and severe pneumonia [8].

Grading criteria for HAPE
In this study, patients diagnosed with High altitude pul-
monary edema were classified as severe by (1) patients 
who were assessed as sever and admitted to the ICU by 
a High altitude medicine clinician through the diagnos-
tic criteria after being seen in the emergency room, and 
(2) patients who had a CT report of the lungs showing: 
textural changes in one/both lungs with a small amount 
of flocculation and patchiness were considered to be 
mild, and flocculation/patchwork/exudation/milled-glass 
shadows in the middle and lower fields of one or both 
lungs, or changes in the inner banding of both lungs were 
considered to be moderate. Flocculent/patchy/exudative/
ground glass shadows in both lungs are severe [7].

Results
A total of 336 patients (266 males and 70 females) diag-
nosed with High altitude pulmonary edema (HAPE) were 
collected from January 2014 to April 2022 at the People’s 
Hospital of Tibet Autonomous Region. The demographic 
and clinical profiles of patients with varying degrees of 
HAPE severity are summarized in Table  1. This table 
includes details on patient demographics like gender, 
age, height, weight, BMI, symptoms (e.g., vertigo, spu-
tum, shortness of breath, palpitations, bluish lips, etc.), 
and physiological measurements (e.g., temperature, heart 
rate, oxygen saturation, systolic blood pressure, and dia-
stolic blood pressure). The patient distribution across 
severity levels was as follows: 67 mild cases, 240 mod-
erate cases, and 29 severe cases of HAPE. The median 
age for patients with mild, moderate, and severe HAPE 
was 35, 31, and 40 years, respectively. The distribution of 
mild, moderate, and severe cases was 49, 195, 22 in males 
and 18, 45, 7 in females. Most basic clinical and vital sign 
variables did not show significant differences between 

the training and validation groups (Table  2). However, 
five variables including nausea symptoms, heart rate 
(HR), oxygen saturation (SpO2), and CT scans exhibited 
notable differences among the three severity groups. Fig-
ure 1 illustrates the distribution of oxygen saturation and 
heart rate among patients with varying severity levels, 
highlighting the significant contrast between mild cases 
and the other two groups. Noteworthy, gender, age, BMI, 
and temperature did not exhibit significant differences 
between the severity groups.

Among the three groups of patients (mild, moderate, 
and severe), symptomatic nausea was reported in 18% 
of mild patients, 19% of moderate patients, and 41% of 
severe patients. The incidence of nausea was signifi-
cantly higher in the severe group compared to the mild 
and moderate groups, with a statistically significant dif-
ference between the three groups (p = 0.017). Regard-
ing SpO2 levels, the median SpO2 was 80 (IQR: 74–86) 
in mild patients, 74 (IQR: 65–84) in moderate patients, 
and 74 (IQR: 63–85) in severe patients. SpO2 was signifi-
cantly higher in the mild group than in the moderate and 
severe groups (p = 0.007). The median HR was 90 (IQR: 
80–100) in mild patients, 100 (IQR: 87–119) in moderate 
patients, and 100 (IQR: 92–115) in severe patients. HR 
was significantly lower in the mild group compared to 
the moderate and severe groups, with a significant differ-
ence among the three groups (p < 0.001). The prevalence 
of a large number of rales was significantly higher in the 
severe group (76%) than in the mild and moderate groups 
(p = 2.2E-16). Minor rales were most prevalent in the 
moderate group (52%), moderate rales in the moderate 
group (25%), and major rales in the severe group (76%), 
showing a significant difference between the three groups 
(p = 2.2E-16). In terms of CT findings, banding/patchi-
ness/flocculation abnormalities in the lower fields of both 
lungs were most common in the mild group (75%), band-
ing/flocculation in the lower fields of both lungs were 
most common in the moderate group (87%), and band-
ing/flocculation in the lower fields of both lungs were 
most common in the severe group (69%). Abnormalities 
on CT scans were significantly higher in the severe group 
compared to the mild and moderate groups, with a sig-
nificant difference between the three groups (p < 0.001).

Predictor selection and modeling
The preliminary data analysis revealed that the target 
variable involves three categories. To identify the most 
significant predictors, feature selection was initially per-
formed using the LASSO model. The LASSO model, 
a regularized linear model, helps prevent overfitting 
by incorporating an L1 regularization term and identi-
fies the most crucial predictors. Ultimately, the LASSO 
model identified four key predictors: lungrales, sputum, 
heart rate (HR), and SpO2. The visualization of feature 
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coefficients in Fig. 2 indicated that lungrales and HR had 
positive coefficients, implying that an increase in these 
variables raised the predictive probability of the target 
variable. Conversely, sputum and SpO2 had negative 
coefficients. Subsequently, the decision tree and ran-
dom forest models were trained using these four pre-
dictors identified by LASSO, and feature importance 
scores were evaluated. In the decision tree model, HR, 
SpO2, lungrales, and sputum were ranked in descending 
order of importance. Figure 3 illustrates that the variable 
importance analysis of the random forest and decision 
tree models reveals four key predictors that consistently 
exhibit high significance. This analysis excludes variables 

such as age, BMI, and blood pressure, as well as other 
clinically relevant factors that may be impractical to col-
lect during emergency screenings of critically ill patients, 
particularly in remote plateau regions.

Model validation and scoring tools
Table 3 Illustrates the training, evaluation, and com-
parison of multinomail multinomail logistic regression, 
decision tree, and random forest models using four fil-
tered predictors on the test set. The random forest model 
exhibited the highest accuracy at 77.94%, along with 
superior precision, recall, and F1 score compared to the 
other models. The final set of predictors, including lung 

Table 1 Clinical characteristics of patients with mild, moderate and severe HAPE
Characteristic Mild, N = 671 Moderate, 

N = 2401
Severe, N = 291 p-value2

Sex 0.3
 Female 18(27%) 45(19%) 7(24%)
 Male 49(73%) 195(81%) 22(76%)
Age 35 (27, 42) 31 (26, 42) 40 (27, 44) 0.089
Height 169 (165, 172) 170 (165, 173) 169 (163, 171) 0.3
Weight 74 (64, 77) 74 (64, 77) 75 (69, 78) 0.5
BMI 24.9 (22.9, 26.3) 24.8 (23.0, 26.4) 25.5 (23.8, 26.4) 0.6
Fatigue 15 (22%) 60 (25%) 7 (24%) > 0.9
Loss of taste 15 (22%) 56 (23%) 6 (21%) > 0.9
Nausea 12 (18%) 46 (19%) 12 (41%) 0.017
Sleep disorder 17 (25%) 47 (20%) 8 (28%) 0.4
Dizzy 37 (55%) 155 (65%) 21 (72%) 0.2
Cough 57 (85%) 205 (85%) 25 (86%) > 0.9
Short breath 34 (51%) 125 (52%) 16 (55%) > 0.9
Dyspepsia 17 (25%) 54 (23%) 7 (24%) 0.9
Palpitations 12 (18%) 46 (19%) 4 (14%) 0.8
Bluish lips 11 (16%) 36 (15%) 2 (6.9%) 0.5
Sputum > 0.9
 No 62 (93%) 219 (91%) 27 (93%)
 Yes 5 (7.5%) 20 (8.3%) 2 (6.9%)
Lung reals 2.2E-16
 None 11 (16%) 55 (23%) 2 (6.9%)
 Unilateral or bilateral lung floor rales (small amount) 41 (61%) 124 (52%) 3 (10%)
 Unilateral or bilateral middle and lower lobes of the lungs (moderate amount) 15 (22%) 60 (25%) 2 (6.9%)
 Large amount of rales (full lungs) 0 (0%) 1 (0.4%) 22 (76%)
Temperature 36.50 (36.30, 

36.70)
36.50 (36.40, 
36.80)

36.50 (36.50, 
36.80)

0.4

Heart rate 90 (80, 100) 100 (87, 119) 100 (92, 115) < 0.001
SpO2 80 (74, 86) 74 (65, 84) 74 (63, 85) 0.007
SBP 122 (117, 133) 120 (111, 130) 120 (117, 130) 0.3
DBP 80 (74, 88) 80 (70, 87) 77 (70, 83) 0.6
CT < 0.001
 Normal 7 (10%) 2 (0.8%) 0 (0%)
 Double lung/texture 10 (15%) 8 (3.3%) 2 (6.9%)
  Bipulmonary lower field inner bands/patchy/bipulmonary lower field inner 

bands/flocculent
50 (75%) 21 (8.8%) 7 (24%)

 Others 0 (0%) 209 (87%) 20 (69%)
1Median (IQR); n (%) 2 Kruskal-Wallis rank sum test; 2 Pearson’s Chi-squared test; Fisher’s exact test
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Rales, sputum (sputum), heart rate (HR), and oxygen 
saturation (SpO2), was determined through this process. 
Following model comparison and evaluation in Fig. 4, the 
ROC curves of the random forest model and the decision 
tree model exhibit distinct performances on the training 
and validation sets. Figure 4B, which depicts the training 

set of the random forest model, indicates an average AUC 
of 0.95, with AUCs for each category being notably high 
(0.93 for class 1, 0.93 for class 2, and 0.99 for class 3). This 
suggests that the model demonstrates excellent classifi-
cation performance on the training set. In contrast, the 
average AUC for Fig. 4C, representing the training set of 
the decision tree model, is 0.93, slightly lower than that of 
the random forest model. The AUCs for class 1 and class 
2 are 0.91 and 0.90, respectively, while class 3 achieves an 
AUC of 0.97, indicating a somewhat weaker classification 
performance in certain categories. On the validation set, 
Fig. 4E (the validation set for the random forest model) 
records an average AUC of 0.90, reflecting good classifi-
cation performance despite a slight decrease compared to 
the training set. The AUCs for class 1, class 2, and class 3 
are 0.93, 0.92, and 0.86, respectively, demonstrating com-
mendable generalization ability. Conversely, the average 
AUC for Fig.  4F (the validation set of the decision tree 
model) is 0.81, which represents a significant decline 
compared to the training set. The AUCs for class 1 and 
class 2 are both 0.78, while class 3 achieves an AUC of 
0.87, indicating a potential tendency towards overfitting. 
Overall, the random forest model outperforms the deci-
sion tree model in both the training and validation sets, 
particularly in terms of classification performance and 
generalization ability, highlighting the stronger advan-
tages of the random forest model.

Figure 4 illustrates that the Multinomail logistic regres-
sion model exhibited better stability and performance 
in predicting HAPE at varying severity levels within the 
validation set. The AUC values for mild, moderate, and 
severe cases were 0.86, 0.92, and 0.89, respectively. The 
confusion matrix of the random forest model demon-
strated balanced performance across all categories, with 
higher prediction accuracy for mild, moderate, and severe 
cases. This model effectively differentiated between the 
different severity levels, particularly excelling in predict-
ing moderate and severe cases. On the other hand, the 
decision tree model showed higher accuracy in predict-
ing mild and moderate cases, but slightly lower accuracy 
in predicting severe cases compared to the random for-
est model. Despite being slightly less accurate than the 
Random Forest model, the decision tree model remained 
effective in predicting mild and moderate cases. In sum-
mary, both Multinomail logistic regression and random 
forest models consistently performed well in predicting 
HAPE severity, with high AUC values. The random forest 
model excelled in maintaining balance across all severity 
categories, while the decision tree model was more adept 
at distinguishing between mild and moderate cases, 
albeit with slightly less effectiveness in predicting severe 
cases. In conclusion, both Multinomail logistic regression 
and random forest models prove to be valuable tools for 
predicting HAPE severity.

Table 2 Clinical characteristics of the training set validation set
Characteristic test, 

N = 1001
train, 
N = 2361

p-val-
ue2

Sex 76 (76%) 190 (81%) 0.4
Age 37 (26, 44) 31 (26, 42) 0.095
Height 169 (165, 

172)
170 (165, 
173)

0.056

Weight 72 (62, 78) 74 (65, 77) 0.4
BMI 24.6 (22.7, 

26.2)
25.0 (23.1, 
26.4)

0.4

Fatigue 20 (20%) 62 (26%) 0.2
Loss of taste 24 (24%) 53 (22%) 0.8
Nausea 71 (71%) 194 (82%) 0.03
Sleep disorder 20 (20%) 52 (22%) 0.7
Dizzy 70 (70%) 143 (61%) 0.1
Cough 83 (83%) 204 (86%) 0.4
Short breath 52 (52%) 123 (52%) > 0.9
Dyspnea 25 (25%) 53 (22%) 0.6
Palpitations 21 (21%) 41 (17%) 0.4
Bluishlips 19 (19%) 30 (13%) 0.14
Sputum 0.7
 no 94 (94%) 214 (91%)
 yes 6 (6.0%) 21 (8.9%)
Lungrales 0.4
 None 16 (16%) 52 (22%)
  Unilateral or bilateral lung floor 

rales (small amount)
55 (55%) 113 (48%)

  Unilateral or bilateral middle 
and lower lobes of the lungs 
(moderate amount)

24 (24%) 53 (22%)

  Large amount of rales (full 
lungs)

5 (5.0%) 18 (7.6%)

SPO2 75 (65, 84) 76 (68, 85) 0.4
SBP 120 (115, 

132)
120 (111, 
130)

0.3

DBP 80 (70, 86) 80 (70, 88) > 0.9
ct 0.5
 Normal 1 (1.0%) 8 (3.4%)
 Double lung/texture 7 (7.0%) 13 (5.5%)
  Bipulmonary lower field inner 

bands/patchy/bipulmonary 
lower field inner bands/
flocculent

26 (26%) 52 (22%)

 Others 66 (66%) 163 (69%)
Group > 0.9
 Mild 20 (20%) 47 (20%)
 Moderate 72 (72%) 168 (71%)
 Sever 8 (8.0%) 21 (8.9%)
1 n (%); Median (IQR); 2 Pearson’s Chi-squared test; Wilcoxon rank sum test; 
Fisher’s exact test
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Clinical benefit curves for the three models (Multino-
mail logistic regression, decision tree, and random forest) 
Fig. 5 shows that the random forest model has a higher 
net benefit than the other models for most threshold 
ranges. The Multinomail logistic regression and decision 
tree models perform better in the low threshold range 
(0.1–0.3), indicating that the models have good clinical 
utility at these thresholds.The red dashed line (Treat All) 
and green dashed line (Treat None) for the Treat All and 
Treat None strategies represent the net benefit of the two 

Table 3 Different model performance evaluation accuracy, 
precision, recall and F1 score

Multinomail logistic 
regression (feature 
selection)

Decision 
Tree (feature 
selection)

Random 
Forest 
(feature 
selection)

Accuracy 0.720588 0.735294 0.779412
Precision 0.535088 0.615 0.702655
Recall 0.571111 0.662222 0.682222
F1 score 0.551921 0.632641 0.689552

Fig. 3 (A) Random forest and (B) Decision tree importance score

 

Fig. 2 LASSO coefficients for all features

 

Fig. 1 (A) Level of heart rate across HAPE risk stratification (B) Level of SpO2 across HAPE risk stratification
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extreme strategies. The Random Forest model maintains 
a higher net benefit at different thresholds. The multino-
mial logistic regression model performs well within the 
lower threshold range (0.1–0.3). However, since the AUC 
during the validation evaluation was lower than that of 
the other two machine learning models, it was not con-
sidered for further analysis. The decision tree model’s net 
benefit curve demonstrates superior performance in the 
lower threshold range. The final scores for each predictor, 
as presented in Table 4, were derived from the Random 
Forest algorithm. Scores below 30 points were classified 
as mild disease (level 1), scores between 30 and 49 points 
were classified as moderate disease (level 2), and scores 
of 50 points and above were classified as severe disease 
(level 3).

SHAP analysis results
In our analysis, we employed SHAP (Shapley Additive 
Explanations) values to interpret the feature importance 
of the variables in our model. The SHAP values offer a 
quantitative measure of the effect each feature has on 
the predictions, emphasizing both the magnitude and 
direction of their influence. The figure presented below 

Fig. 5 Yellow curve: net benefit of the Multinomail logistic regression 
model. Orange curve: net benefit of the decision tree model. Green curve: 
net benefit of the random forest model. Red dashed line: net benefit as-
suming all patients receive treatment (Treat All). Green dashed line: net 
benefit assuming all patients receive no treatment (Treat None)

 

Fig. 4 (A, B, C) for training set; (D, E, F) for validation set; (A, D) for ROC curve of multinomail logistic regression; (B, E) for ROC curve of random forest 
model; (C, F) for ROC curve of decision tree model
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illustrates the SHAP values for each feature, with vari-
ables such as ‘SPO2’, ‘HR’, and ‘lungales’ demonstrating 
significant variation in their contributions across differ-
ent instances within the dataset. Figure 6.

Discussion
The study aimed to develop a machine-learning based 
risk stratification tool for High Altitude Pulmonary 
Edema (HAPE) to assist clinicians in accurately screening 
severe patients in emergency care. Key predictors iden-
tified include lung rales, sputum production, heart rate, 
and blood oxygen saturation. Modeling was conducted 
to assess the stability and performance of Multinomial 
logistic regression and random forest models in deter-
mining HAPE severity. The goal is to stratify severity 
levels, accurately screen severe patients diagnosed with 
HAPE, and facilitate prompt and effective treatment. In 
the process of predictor selection, we excluded CT (Com-
puted Tomography) imaging as a potential predictor. 
This decision was based on several practical and clinical 
considerations. Firstly, CT scans are often unavailable 
in many high-altitude regions with limited medical 
resources. These areas typically lack the advanced imag-
ing equipment required for CT examinations, making it 
impractical to rely on CT as a routine diagnostic tool in 
such settings [16]. Secondly, acute high-altitude pulmo-
nary edema (HAPE) is characterized by its rapid onset 
and progression. In emergency situations, transporting 

patients to larger hospitals for CT scans can significantly 
delay diagnosis and treatment, potentially exacerbating 
the condition [1]. Therefore, considering the accessibil-
ity and urgency of care in high-altitude environments, we 
chose to exclude CT from our list of predictors to ensure 
the practicality and feasibility of our risk stratification 
tool. Despite the exclusion of CT, our study successfully 
identified several clinically relevant predictors that can be 
readily assessed in emergency settings. These predictors, 
including lung rales, sputum production, heart rate, and 
blood oxygen saturation, provide a robust foundation for 
our machine-learning models. Our findings highlight the 
importance of these easily accessible clinical signs and 
measurements in accurately stratifying HAPE severity. 
In conclusion, our machine-learning based risk stratifica-
tion tool offers a practical and effective solution for iden-
tifying severe cases of HAPE in high-altitude regions. By 
focusing on readily available clinical data, we aim to facil-
itate prompt and accurate diagnosis, ultimately improv-
ing patient outcomes in emergency care settings.

Four predictors on high altitude pulmonary edema to 
predict disease severity
Pulmonary rales are a common clinical manifestation in 
patients with High Altitude Pulmonary Edema (HAPE), 
and their severity is closely linked to disease progression. 
Research indicates that the presence and intensity of pul-
monary rales in patients vary significantly based on the 
severity of HAPE [15, 17]. Our study identified lung rales 
as a crucial predictor and a key feature utilize both the 
LASSO model and the random forest model. This finding 
suggests that lung rales are not only a typical symptom 
of HAPE but also exhibit high sensitivity and specificity 
in predicting disease severity. sputuming up sputum is 
another significant clinical symptom in HAPE patients, 
with its presence or absence reflecting the extent of dam-
age to the respiratory tract [1]. Our study revealed signif-
icant differences in the incidence of sputum production 
among HAPE patients of varying severity, particularly 
higher in those with severe HAPE. This finding aligns 
with previous studies, indicating that sputum production 
can serve as a reliable predictor of HAPE severity. Heart 
rate, as a crucial physiological parameter reflecting the 

Table 4 Random forest scoring form
Score Score Score Score

Lungrales Normal 0 Small amount of 
crackles in one or 
both lung bases

9 Medium amount of 
crackles in unilateral 
or bilateral lower and 
middle lobes of the 
lungs

18 Lots of 
crackles in 
full lungs

27

Sputuming 
sputum

None 7 Infrequent 7 Frequent 13

HR 20–59 0 60–99 8 100–139 16 140–177 24
SpO2 0–24 0 25–49 7 50–74 14 75–98 21

Fig. 6 SHAP analysis in HAPE severity prediction
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condition of the cardiovascular system, tends to be nota-
bly elevated in patients with HAPE, especially in critical 
conditions. Our modeling analysis further confirmed 
the significance of heart rate in predicting HAPE [5, 19]. 
Heart rate consistently emerged as a crucial predictor in 
both Random Forest and Decision Tree models, as indi-
cated by feature importance rankings. This underscores 
the value of monitoring heart rate for gaining insights 
into a patient’s condition and facilitating early detection 
of disease progression. Additionally, oxygen saturation 
serves as a vital indicator for assessing hypoxia and oxy-
gen levels in the body [2, 9, 11, 18]. Our findings high-
light a notable decline in SpO2 as a key characteristic 
among patients with severe HAPE. Both Random Forest 
and Multinomail logistic regression models highlighted 
the importance of SpO2 as a predictor, aligning with 
existing literature. Furthermore, we conducted stratifica-
tion of SpO2 levels among HAPE patients with varying 
severities.

Models on grading the severity of high altitude pulmonary 
edema disease
In this study, three machine learning models, Multino-
mail logistic regression, random forest, and decision tree, 
were selected for predicting the severity of high-altitude 
pulmonary edema (HAPE). Each model possesses dis-
tinct strengths and weaknesses, performing variably 
in different scenarios. Multinomail logistic regression 
models are valued for their simplicity and interpret-
ability, commonly used in medical prediction research 
due to their explicit coefficients, which elucidate the 
impact of individual predictors [14]. The Multinomail 
logistic regression model utilized in this study demon-
strated strong performance in predicting HAPE sever-
ity, achieving a high area under the curve (AUC) value 
of 0.82. However, Multinomail logistic regression mod-
els have limitations in handling nonlinear relationships 
and complex interaction effects. On the other hand, the 
random forest model, an ensemble learning method that 
combines multiple decision trees, showed superior per-
formance in HAPE severity prediction in this study. It 
delivered higher accuracy, precision, recall, and F1 score 
compared to the other models.The random forest model 
demonstrated exceptional capability in managing a large 
number of features and effectively handling interactions 
and nonlinear relationships among them, resulting in 
the highest AUC value of 0.86 in this study, particularly 
in the prediction of moderate and severe HAPE patients. 
Decision tree models, operating through a tree structure, 
offer robust interpretive and visualization features. While 
the performance of the decision tree model in this study 
was not as strong as that of the random forest model, it 
still outperformed the Multinomail logistic regression 
model. The decision tree model provides a clear decision 

path for each predictor, aiding clinicians in understand-
ing the specific contribution of each factor to the pre-
diction. However, a single decision tree is susceptible to 
overfitting and does not perform as well as the random 
forest model. Furthermore, incorporating SHAP values 
into our model has yielded a nuanced understanding of 
feature importance [4, 13].

SHAP values stand out from conventional feature 
importance metrics by providing a detailed and interpre-
table breakdown of each feature’s contribution to individ-
ual predictions. For instance, the SHAP analysis of ‘SPO2’ 
consistently reveals its significant impact on the model’s 
output, indicating that reduced oxygen saturation levels 
are likely to substantially affect patient outcomes. This 
insight not only enhances the transparency of our model 
but also has practical implications for guiding clinical 
decision-making, especially in scenarios where compre-
hending the rationale behind each prediction is essential.

Limitations and future of the study
This study was conducted at a single healthcare facility, 
which limits the generalizability of the results. The ret-
rospective study design may have led to incomplete or 
inaccurate data recording, potentially affecting the accu-
racy of the findings. Retrospective studies inherently face 
challenges in controlling for confounding variables, with 
the possibility of unmeasured factors influencing out-
comes. The assessment of rales is largely dependent on 
the subjective judgment of the clinician’s experience, and 
lacks quantification. Furthermore, external validation in 
independent samples or different centers is absent, high-
lighting the need for further verification in larger stud-
ies and diverse settings to ensure reliability. While the 
patients included in this study underwent appropriate 
laboratory tests, the focus was on stratifying high-alti-
tude pulmonary edema (HAPE) with acute onset based 
on symptoms and signs in a timely manner. Laboratory 
indicators were not considered in this study, and it is rec-
ommended that future research on hospitalized patients 
with HAPE explore this aspect more thoroughly. Addi-
tionally, due to the unbalanced dataset generated during 
real-world sample collection, the second category of the 
target variable contained significantly more patients than 
the other two categories. To improve the results in future 
studies, it is crucial to either increase the sample size or 
implement additional reweighting methods.

In future research, we will focus on the following areas: 
(1) Prospective Studies: We aim to conduct prospective 
studies to address the limitations of retrospective data, 
thereby ensuring more accurate and comprehensive data 
collection. (2) Incorporation of Laboratory Data: Future 
studies will include laboratory indicators such as arterial 
blood gases, complete blood counts, and inflammatory 
markers to enhance the predictive accuracy of the model. 
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(3) Development of a Clinical Decision Support System: 
We will integrate the validated model into a clinical deci-
sion support system to provide clinicians with real-time 
risk assessments and treatment recommendations.

Conclusion
This study further confirmed that lungrales, heart rate, 
oxygen saturation, and sputum sputum are key predictors 
for urgently determining the severity of High Altitude 
Pulmonary Edema (HAPE) by systematically analyzing 
the data of HAPE patients. A model for identifying the 
severity of HAPE was established and validated for the 
first time, providing a scientific basis for early diagnosis 
and intervention, as well as a valuable reference tool for 
clinicians. Future studies could delve into the specific 
mechanisms of these factors to enhance the diagnosis 
and treatment of HAPE, ultimately reducing mortality 
rates attributed to diagnostic delays.
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