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Introduction
Sleep is a critical physiological activity for human beings, 
occupying a third of a person’s life span. Sleep quality is 
directly connected to physical and mental health; e.g., 
low-quality sleep can lead to a variety of health problems, 
such as stroke, and brain damage [1, 2]. According to the 
American Academy of Sleep Medicine (AASM), an over-
night sleep can be divided into three main stages: wake 
(W), rapid eye movement (REM), and non rapid eye 
movement (NREM) [3]. NREM can be further divided 
into N1, N2, and N3 stages. The determination of sleep 
stages is a widely used measure for physicians to evaluate 
sleep quality, as it aids them in accurately diagnosing the 
disease and formulating a reasonable treatment.
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Abstract
Sleep stage classification is a significant measure in assessing sleep quality and diagnosing sleep disorders. Many 
researchers have investigated automatic sleep stage classification methods and achieved promising results. 
However, these methods ignored the heterogeneous information fusion of the spatial–temporal and spectral–
temporal features among multiple-channel sleep monitoring signals. In this study, we propose an interpretable 
multi-stream fusion network, named MSF-SleepNet, for sleep stage classification. Specifically, we employ Chebyshev 
graph convolution and temporal convolution to obtain the spatial–temporal features from body-topological 
information of sleep monitoring signals. Meanwhile, we utilize a short time Fourier transform and gated recurrent 
unit to learn the spectral–temporal features from sleep monitoring signals. After fusing the spatial–temporal and 
spectral–temporal features, we use a contrastive learning scheme to enhance the differences in feature patterns 
of sleep monitoring signals across various sleep stages. Finally, LIME is employed to improve the interpretability 
of MSF-SleepNet. Experimental results on ISRUC-S1 and ISRUC-S3 datasets show that MSF-SleepNet achieves 
competitive results and is superior to its state-of-the-art counterparts on most of performance metrics.
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In clinical practice, polysomnography (PSG) is the 
gold standard for sleep stage classification, and mainly 
includes electroencephalogram (EEG) signals, electro-
oculogram (EOG) signals, electromyography (EMG) sig-
nals, and electrocardiogram (ECG) signals [4, 5]. Many 
researchers have attempted to investigate automatic 
sleep stage classification methods and achieved prom-
ising results. Generally, automatic sleep classification 
methods can be divided into conventional feature-based 
methods employing machine learning [6] and end-to-
end-based methods using deep neural networks [7]. 
For feature-based methods, specified features are gen-
erated from sleep monitoring signals, and then are fed 
into machine learning models like those employing a 
k-nearest neighbors (k–NN) algorithm [8], support vec-
tor machine (SVM) [9], random forest (RF) [10], deci-
sion tree (DT) [11], naive Bayes classifier [12], or linear 
and quadratic discriminant analysis [13, 14]. However, 
feature-based methods highly rely on the quality of sleep 
monitoring signals and domain knowledge utilization, 
and this greatly limits their classification performance 
in real scenarios. Note that deep neural networks have 
achieved great success in computer vision, natural lan-
guage processing, etc.; therefore, researchers have shifted 
their focus from feature-based methods to end-to-end-
based methods, which have the advantage of effectively 
self-learning features from original sleep monitoring sig-
nals. Recent end-to-end-based methods are MNN [15], 
DeepSleepNet [16], SeqSleepNet [17], GraphSleepNet 
[18], MSTGCN [19], MVF-SleepNet [20], TinySleepNet 
[21], U-Sleep [22], and so on. These methods utilize the 
temporal, spectral, spatial–temporal, or spectral–tem-
poral feature information extracted from sleep monitor-
ing signals to build sleep classification models. However, 
they still ignore the heterogeneous information fusion 
of the spatial–temporal and spectral–temporal features 
information, which would enhance sleep classification 
performance.

In this study, we propose an interpretable multi-stream 
fusion network, named MSF-SleepNet, for sleep stage 
classification. Concretely, graph structure learning, Che-
byshev graph convolution, a spatial and temporal atten-
tion mechanism, and temporal convolution are used to 
acquire the spatial–temporal features from body-topo-
logical information of sleep monitoring signals. Simulta-
neously, a short time Fourier transform (STFT), VGG-16 
network, gated recurrent unit (GRU), and GRU attention 
are employed to capture the spectral–temporal features 
from sleep monitoring signals. Finally, we fuse the spa-
tial–temporal and spectral–temporal features to classify 
sleep stages into five categories, and a contrastive learn-
ing scheme is utilized to improve the feature pattern 
difference of sleep monitoring signals between differ-
ent sleep stages. LIME is applied to enhance the model’s 

interpretability. Experiments are performed on two pub-
lic datasets: ISRUC-S1 and ISRUC-S3 [23]. The results 
demonstrate that MSF-SleepNet achieves competitive 
results and outperforms its state-of-the-art counterparts 
on most of performance metrics.

To sum up, our contributions are as follows.

 	• We use the combination of Chebyshev graph 
convolution and temporal convolution to learn the 
spatial–temporal features from body-topological 
information of sleep monitoring signals.

 	• We combine STFT and GRU to obtain the spectral–
temporal features from sleep monitoring signals.

 	• We fuse spatial–temporal and spectral–temporal 
features, and utilize a contrastive learning scheme to 
enhance the differences in feature patterns of sleep 
monitoring signals across various sleep stages.

 	• LIME is applied to improve the interpretability of 
MSF-SleepNet.

 	• Experiment results on ISRUC-S1 and ISRUC-S3 
datasets reveal that MSF-SleepNet achieves state-of-
the-art performance.

The rest of this paper is organized as follows. Section II 
provides a concrete introduction of existing sleep stage 
classification methods, their deficiencies, and some new 
models for dealing with these defects. Section III intro-
duces all components of MSF-SleepNet in details. Two 
datasets of ISRUC-S1 and ISRUC-S3 are introduced to 
compare MSF-SleepNet with cutting-edge baselines, and 
the results of an interpretability analysis are presented in 
Section IV. The final Section presents our conclusions.

Related work
Feature-based methods employing machine learning
Various feature-based methods employing machine 
learning have been applied to automatic sleep stage clas-
sification. Machine learning classifiers can be grouped 
[24] as instance-based algorithms, decision tree algo-
rithms, and Bayes rule-based classifiers. Memar et al. 
[25] proposed a system to classify the wake and sleep 
stages with high sensitivity and specificity. Then, the 
minimal-redundancy-maximal-relevance feature selec-
tion algorithm is used to eliminate redundant and irrel-
evant features. Finally, selected features are classified by 
a random forest classifier. Dhok et al. [26] proposed an 
automatic classification method for CAP phases (A and 
B) based on the Wigner–Ville Distribution (WVD) and 
Rényi entropy (RE) features. A support vector machine 
based on a medium Gaussian kernel is used for classifi-
cation, and 10-fold cross validation is conducted. Gun-
narsdottir et al. [27] developed an algorithm to extract 
features from EEG, EMG, and EOG signals using a 
likelihood ratio decision tree classifier based on rules 
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predefined in the AASM manual. Features are calculated 
on 30-second epochs in the time and frequency domain 
of the signal; these features are then input to the classi-
fier. However, feature-based methods highly rely on the 
quality of sleep monitoring signals and feature extrac-
tion/selection with domain knowledge [24, 28].

End-to-end-based methods using deep neural networks
With the big success in computer vision, natural lan-
guage process, and other domains, more and more end-
to-end-based methods using deep neural networks are 
being utilized to classify sleep stages. These methods 
employed convolutional neural networks (CNNs) [29], 
recurrent neural networks (RNNs) [17], graph convolu-
tion networks (GCNs) [30], long short-term memory 
(LSTM) [31], and GRUs. Sokolovsky et al. [32] designed 
a deep CNN architecture for automated sleep stage clas-
sification of EEG and EOG signals. Dong et al. [15] used 
a mixed neural networks concatenating a multi-layer 
perceptron and an RNN to address sleep stage classifi-
cation with a single electrode recording. Furthermore, 
Phan et al. [33] proposed a joint classification prediction 
framework based on a CNN for automatic sleep stage, 
and introduced a simple and efficient CNN architecture 
to support the framework. This framework provided a 
way to further study different automatic sleep stage neu-
ral networks. Jia et al. [19] proposed a multi-view spa-
tial–temporal graph convolutional network (MSTGCN) 
with domain generalization for sleep stage classification. 
Although these end-to-end-based methods can effec-
tively utilize time-varying spatial and temporal features 
from multi-channel brain signals, they still ignored the 
heterogeneous information fusion of the spatial–tempo-
ral and spectral–temporal features information, which 
would greatly improve the sleep staging performance.

Methodology
Figure  1 shows the overall structure of MSF-SleepNet. 
It contains three modules: a spatial–temporal feature 
extractor, spectral–temporal feature extractor, and sleep 
stage classifier. Details are presented below.

Spatial–temporal feature extractor
This module consists of sleep contrastive learning net-
work (SCL Net) and the process of learning the spatial–
temporal features.

Sleep contrastive learning network (SCL Net)
The SCL Net consists of a framework for contrastive 
learning of sleep stage classification (SleepCL) and a 1-D 
convolution network named SFNet.

Contrastive learning [34] is a kind of self-supervised 
learning that does not rely on annotated data and instead 
learns knowledge by itself from unannotated data. The 
idea of contrastive learning can be expressed as acquiring 
a representation learning model by automatically con-
structing similar and dissimilar instances. Through this 
model, similar instances are relatively close together in 
projection space, while dissimilar instances are relatively 
far apart [35]. Hinton et al. proposed the SimCLR [36] 
framework in 2020; it consists of data augmentation, a 
base encoder, a projection head, a function for maximiz-
ing similarity, and a contrastive loss function.

In our network, we applied the idea of contrastive 
learning with the SimCLR framework to enhance fea-
ture representation extraction. Specifically, we combine 
SleepCL with SFNet to acquire general feature represen-
tations from unlabeled data. The resulting contrastive 
learning network is displayed in Fig.  2. We use mini-
mum–maximum normalization [37] and Z-score nor-
malization [38] to transform original signal data into 
augmented data. For the base encoder, we design a 1-D 
convolution neural network named SFNet to extract 

Fig. 1  The overall architecture of MSF-SleepNet. It includes three modules: a spatial–temporal feature extractor, spectral–temporal feature extractor, and 
sleep stage classifier
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representation vectors hi, hj from the augmented data 
sample. SFNet includes 1-D convolution layers, maxpool-
ing layers, a ReLU activation function, batch normal-
ization, and dropout. For the projection head, a single 
multi-layer perceptron (MLP) with a ReLU activation 
function was used for non-linear projection (NLProj). 
NLProj applies nonlinear transformation to project the 
representation hi and hj into representation Zi and Zj. 
For maximizing similarity and the contrastive loss func-
tion, a cosine similarity function is utilized to compute 
the similarity between two augmented signal data. The 
goal is to maximize the similarity between positive sam-
ples and minimize the similarity between negative sam-
ples. The formula for similarity is as follows: 

	 Similarity(Zi, Zj) = Z⊤
i Zj/ (∥Zi∥ ∥Zj∥) ,� (1)

where ZT
i , ||Zi||, ||Zj || are the transposes of Zi, and the 

lengths of Zi and Zij , respectively. The contrastive loss 
function and optimization process is illustrated below: 

	

l(i, j) = − log exp [Similarity(i, j)/τ ]∑2N
k=1∧k ̸=i exp [Similarity(i, k)/τ ]

L = 1
2N

N∑
k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)],
� (2)

where τ  denotes the temperature hyperparameter, and 
N  is the batch size of contrastive learning data. After the 
optimization process of the loss function, the distance 

between similar data in the projection space decreases 
while the distance between dissimilar data increases.

After SleepCL, SFNet is used to extract rich features 
of sleep stages. After SCL Net, the general features from 
unlabeled data are learned.

Spatial–temporal feature extraction
This module consists of graph structure learning, tempo-
ral attention and spatial attention, Chebyshev graph con-
volution, and temporal convolution. Each component is 
explained below.

Multi-modal physiological signals include signals from 
different physiological channels, such as EEG, EOG, 
EMG and ECG. These signals provide information about 
the brain, eyes, muscles, and heart, which together reflect 
an individual’s overall physiological state and activity. 
When processing these multiple physiological signals, the 
graph structure data can be used to integrate and analyze 
the complex interaction between them. Therefore, our 
work adopts graph structure learning to construct and 
define the node and edge structures in the graph model 
according to the internal correlation between these sig-
nals, so as to represent the non-Euclidean space graph 
information represented by different modal physiological 
signals [19]. Graph structure learning is applied to learn 
and update the graph structure dynamically. The graph 
structure is defined as follows: 

	

AGL
ij =

exp
(
ReLU

(
wT |xi − xj |

))
N∑

j=1
exp (ReLU (wT |xi − xj |)) � (3)

where xi, xj  represents any two nodes in the gener-
ated graph structure, ReLU is the non-linear activation 
function, and w is the weight matrix. The graph struc-
ture AGL

ij  is optimized by minimizing the following loss 
function: 

	
LGL =

N∑
i,j=1

∥xi − xj∥2
2 AGL

ij + α
∥∥AGL

∥∥2
F � (4)

where α is the regularization parameter to control the 
degree of regularization. The absolute value in the for-
mula represents the similarity of two nodes, and the 
greater the similarity, the higher the connection strength 
of two nodes in the graph structure. Temporal and spatial 
attention mechanisms [39] acquire the most relevant fea-
ture information of different sleep stages from temporal 
and spatial dimensions, respectively. Temporal attention 
and spatial attention are defined as follows: 

	
T = Vt · σ

((
X (l−1)

)T
M1

)
M2

(
M3X (l−1)

))
+ bt

)
,� (5)

Fig. 2  The sleep contrastive learning network (SCL Net). In SleepCL, 
minimum-maximum normalization and Z-score normalization are jointly 
applied as data augmentation methods. SFNet is employed as the base 
encoder. The projection head comprises two fully connected layers and 
a ReLU activation function named NLProj. A cosine similarity calculation 
is selected to maximize similarity and minimize contrastive loss. SFNet is 
used for feature extraction
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S = Vs · σ

((
X (l−1)

)
Z1

)
Z2

(
Z3X (l−1)

))T
+ bs

)
,� (6)

where Vt, bt, Vs, bs, M1, M2, M3, Z1, Z2, and Z3 are 
learnable parameters; X (l−1) is the first l layer’s input, 
and σ denotes the sigmoid activation function. In real-
world scenarios, there are various types of graph data that 
describe complex relationships and interactions between 
entities in the form of graph structures. Traditional deep 
learning methods often struggle to process this data effi-
ciently, as they are primarily designed for Euclidean data 
structures, such as images and text. However, this gap has 
been filled by the emergence of graph convolutional neu-
ral networks, a deep learning model specifically designed 
to process graph data. Compared to traditional convo-
lutional neural networks (CNNs), GCNs can directly 
manipulate graph structures in non-Euclidean space. In 
our work, a Chebyshev graph convolution [18] is used in 
the GCN to process the graph data of time series, and the 
feature representation after convolution is output. The 
Chebyshev graph convolution can fully obtain the topo-
logical structure information of the graphs and realize 
the extraction of signal spatial features. The graph struc-
ture data generated by graph structure learning above is 
used as the input of Chebyshev graph convolution, and 
the number of nodes is determined by the number of 
nodes of the graph data, that is, the length of the signal 
fragment. The Chebyshev graph convolution is defined as 
follows: 

	

gθ ∗G x = gθ(L)x =
K−1∑
k=0

θkTk(L̃)x

L̃ = 2
λmax

L − IN ,

� (7)

where gθ , ∗G, θ, x, Tk, λmax, and IN  denote the convo-
lution kernel, graph convolution operation, a vector of 
Chebyshev coefficients, input data, Chebyshev polynomi-
als recursively, a Laplacian matrix’s maximum eigenvalue, 
and an identity matrix, respectively. And temporal con-
volution is employed to gain spatial–temporal features 
among neighboring sleep stages on the basis of spatial 
features. The temporal convolution is defined as follows: 

	
Y(l) = ReLU

(
Φ ∗

(
ReLU

(
gθ ∗G Ŷ(l−1)

))))
,� (8)

where ReLU, Φ, and ∗ are the activation function, the 
parameters of the convolution kernel, and the convolu-
tion operation, respectively. Next, the spatial–temporal 
features are learned.

Spectral–temporal feature extractor
Spectral feature extraction
In order to learn spectral features, STFT and VGG-16 
network are combined.

STFT is a basic time-frequency analysis method. STFT 
helps describe the frequency content of signal data at 
each point in time. The signal data is analyzed by STFT, 
and is then mapped to a two-dimensional function of fre-
quency and time. To calculate STFT, the signal is divided 
into multiple short-time signal segments with some over-
lap by moving time window. The discrete Fourier Trans-
form (DFT) is then applied for each segment to obtain 
each local spectrum. The STFT equation is 

	
S(m, k) =

N−1∑
n=0

s (n + mN ′) w(n)e−j 2π
N nk,� (9)

where k = 0, 1, . . . , N − 1, S(m, k) denotes the m-index 
time–frequency spectrogram. N  is window segment 
length. N ′ is the shifting step of the time window. w(n) is 
the window of an N-point sequence.

In our network, we use STFT to transform the origi-
nal time domain and frequency domain signals from raw 
data into time–frequency domain signals. Due to its good 
performance in extracting rich features, we apply VGG-
16 [20] to the original signal data after signal processing 
in the feature extraction step to obtain spectral features 
from frequency information. After this step, the spectral 
features are learned.

Spectral–temporal feature extraction
Since there exists neighboring information of adjacent 
signal segments, we transform spectral features obtained 
by VGG-16 into five-timestep features to fully consider 
the potential correlation between neighboring data 
segments.

Then we apply a GRU [15] and GRU attention mecha-
nism jointly to the five-timestep spectral features. This 
allows us to capture richer spectral–temporal feature 
representations from neighboring information of adja-
cent signal segments. The GRU is defined as follows: 

	
h(t) =

(
1 − z(t)

)
◦ h̃(t) + z(t) ◦ h(t−1),� (10)

where z(t) is the gating signal, h̃(t) is the information of 
the current signal, and h(t−1) is the information transmit-
ted from the upper unit. The GRU attention mechanism 
allows us to attain the most relevant feature information 
among sleep physiological signals according to different 
weights. The GRU attention mechanism is defined as 
follows: 
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ag,t = Ug · tanh
(

NX(l−1) + bg

)

αg,t = exp (ag)∑T
k=1 exp (ak)

,
� (11)

where Ug , N , and bg  are learnable parameters; tanh is the 
activation function; and αg,t is the GRU attention matrix. 
After introducing GRU attention, the spectral–temporal 
features are learned.

Sleep stage classifier
After multi-stream feature extraction, we conduct a con-
catenate operation on three feature matrices to accom-
plish multi-stream feature fusion. Because a single 
segment without neighboring information can reflect the 
ontological characteristics of physiological signals, spec-
tral features should be taken into consideration. The con-
catenate operation is defined as follows: 

	 X = X F ∥ X S ∥ X T ,� (12)

where X F , X S , and X T  denote the spatial–temporal fea-
tures, spectral features, and spectral–temporal features, 
respectively. ∥ is the concatenate operation. Next, we feed 
the fused features into a 256-dimensional fully connected 
layer. After the Softmax activation layer, the output 
results are classified into five sleep stages. The pseudo-
code of MSF-SleepNet is shown in Algorithm 1.

Experiment results and discussion
Experiment settings
To fairly compare model performance, we utilize the 
same experimental setup and environment configura-
tion for all models. On the ISRUC-S3 dataset, we employ 

a 10-fold cross-validation strategy, and use a subject-
independent strategy for cross-validation. Specifically, we 
divide the data of 10 subjects into different training sets 
and testing sets, in which the data of each subject is used 
as the testing set, and the data of the remaining 9 sub-
jects is used as the training set. Similarly, on the ISRUC-
S1 dataset, the data of 100 subjects are randomly divided 
into ten groups, each group containing ten subjects’ data, 
one of which is used as the testing set, and the data of 
the remaining nine groups is used as the training set. The 
MSF-SleepNet is implemented with Python 3.6, Tensor-
Flow 1.15.0, and Keras 2.3.1. The experiments are per-
formed on a computer server equipped with an Intel i7 
CPU 3.40 GHz, 261 GB memory, Windows 10 operating 
system, and 4 × NVIDIA GeForce GTX TITAN X graph-
ics cards with 12288 MiB GPU memory.

Datasets
Two PSG subsets of ISRUC datasets are employed in our 
experiments. The first one is ISRUC-S3, which contains 
10 healthy subjects (9 males and 1 female) aged 30 to 58. 
Each PSG recording contains 12 channels: 6 EEG chan-
nels, 2 EOG channels, 3 EMG channels, and 1 ECG chan-
nel. The second subset is ISRUC-S1, which contains 100 
subjects who suffer from sleep disorders (55 males and 45 
females, aged 20 to 85). Each PSG recording contains the 
same 12 channels as in ISRUC-S3. The sleep stages cor-
responding to the PSG recordings are visually scored by 
two sleep disorder specialists. ISRUC-S3 and ISRUC-S1 
are compared in Table 1.

Performance comparison
In this section, we compare our proposed network with 
other sleep staging methods (such as those employing an 
SVM, RF, CNN, RNN, or LSTM) for sleep stage classifica-
tion on the datasets of ISRUC-S1 and ISRUC-S3 datasets. 
In this way, we can validate the performance of MSF-
SleepNet. The evaluation metrics are overall accuracy, 
F1-score, and Kappa score,the F1-score of the evaluation 
metric is calculated separately for the five different sleep 
stages, including W, N1, N2, N3 and REM stages. Finally, 
the F1-score of these five classes are averaged, which is 
F1-score in the overall classification performance results. 
The results obtained by the different models are shown in 
Table 2. We compare the best experimental results of our 
model with the best performance of other methods. At 
the same time, we also conduct ten repeated experiments 
to calculate the mean value and standard deviation of our 

Table 1  Comparison of datasets ISRUC-S1 and ISRUC-S3
Dataset # of subjects Gender Age Health condition # of epochs

Male Female W N1 N2 N3 REM Total
ISRUC-S1 100 55 45 20–85 Sleep disorders 20098 11062 27511 17251 11265 87187
ISRUC-S3 10 9 1 30–58 Health 1651 1215 2609 2014 1060 8549
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network in each evaluation metric, and the results are as 
follows: the mean values of accuracy, F1-score and Kappa 
coefficient of the overall results are 0.846, 0.835 and 
0.802, and the standard deviations are 0.0018, 0.0018 and 
0.0024, respectively; the mean values of F1-score of the 
five different sleep stages are 0.909, 0.640, 0.836, 0.907 
and 0.883, and the standard deviations are 0.0016, 0.0039, 
0.0010, 0.0034 and 0.0041.

As can be seen from Table 2, in each evaluation met-
ric, our model has better overall performance than other 
models, where the overall accuracy, F1-score and Kappa 
score are 0.849, 0.838 and 0.805, respectively. Traditional 
machine learning methods, such as those using an SVM 
or RF, fail to extract temporal and spatial features; mean-
while, deep learning models, like those using a CNN, 
RNN, or LSTM, are specialized in capturing relevant 
domain information of temporal and spatial dimensions. 
Hence, deep learning models achieve better classification 
performance on different sleep stages than traditional 
machine learning methods.

Although deep learning methods are better than most 
traditional methods, our proposed model outperforms 
these methods on almost all evaluation indicators. From 
the perspective of overall accuracy, F1-score and Kappa 
score, the classification performance are 1% better than 
the sub-optimal results. This is due to the fact that our 
method makes full use of and integrates multiple hetero-
geneous additional information such as unlabeled infor-
mation, topological information, frequency information, 
and neighboring information; moreover, it fully considers 
spectral, temporal, and spatial features. For each specific 
sleep stage, our method is more accurate in classifying 
different sleep stages compared most other models. Spe-
cifically, the W stage and N3 stage have the highest classi-
fication accuracy 0.912 and 0.910 on account of the larger 
sample size and relatively obvious features compared to 
the other three sleep stages. In addition, N2 stage and 
REM stage are 0.4% and 1.5% higher than the sub-opti-
mal model, 0.837 and 0.888, respectively. Our model’s 

classification accuracy for the N1 stage is 2% higher than 
the second best classification result. However, the clas-
sification performance for the N1 stage is much lower 
than that for the other four sleep stages because it is the 
transitional phase between the W stage and N2 stage 
and its sample size is small due to fewer people sleep-
ing the whole night. Overall, our model’s experimental 
performance and classification accuracy is best, which 
validates its effectiveness and superiority for sleep stage 
classification.

From the classification results shown in Fig. 3, we can 
conclude that our proposed model can accurately classify 
most sleep stages to some extents. The confusion matri-
ces show the performance results of MSF-SleepNet on 
two datasets, ISRUC-S1 and ISRUC-S3, which compare 
the true sleep stages with the predicted sleep stages. On 
the ISRUC-S3 dataset, MSF-SleepNet achieved more 
than 90% classification accuracy for the three sleep stages 
of W, N3 and REM, of which the classification accuracy 
of W stage reached 91.04%. At the same time, the clas-
sification performance of N2 stage reached more than 
85%. On the ISRUC-S1 dataset, MSF-SleepNet has the 
highest classification accuracy of 90.26% among the five 
sleep stages, and the accuracy of N3 and REM stages 
also reached more than 85%. Therefore, the model can 
achieve excellent classification results on the whole. To 
research the influence of dataset size on classification 
performance, we conduct experiments on the ISRUC-S1 
dataset with 50 subjects. The results are shown in Table 3. 
Table 3 demonstrates that our network has better classifi-
cation performance compared to other models.

To discuss the classification performance of the pro-
posed model on the PSG level and compare automatic 
classification with manual scoring by human experts, we 
visualize the whole night’s PSG signal hypnogram of the 
subject that classified with the highest accuracy (91.93%) 
by our model. Figure 4 shows the true hypnogram (top) 
and predicted hypnogram (bottom) of these PSG data. 
As we can see, the W stage has the highest similarity 

Table 2  Experimental results comparison of current methods on the ISRUC-S3 dataset
Paper Models Overall results F1-score of different sleep stages

Accuracy F1-score Kappa W N1 N2 N3 REM
Alickovic et al. [9] SVM 0.733 0.721 0.657 0.868 0.523 0.699 0.786 0.731
Memar et al. [25] RF 0.729 0.708 0.648 0.858 0.473 0.704 0.809 0.699
Dong et al. [15] MLP + LSTM 0.779 0.758 0.713 0.860 0.469 0.760 0.875 0.828
Supratak et al. [16] CNN + BiLSTM 0.788 0.779 0.730 0.887 0.602 0.746 0.858 0.802
Chambon et al. [40] CNN 0.781 0.768 0.720 0.870 0.550 0.760 0.851 0.809
Phan et al. [17] ARNN + RNN 0.789 0.763 0.725 0.836 0.439 0.793 0.879 0.867
Jia et al. [18] STGCN 0.799 0.787 0.741 0.878 0.574 0.776 0.864 0.841
Jia et al. [19] MSTGCN 0.821 0.808 0.769 0.894 0.596 0.806 0.890 0.856
Li et al. [20] MVF-SleepNet 0.841 0.828 0.795 0.900 0.625 0.833 0.911 0.873
Proposed model MSF-SleepNet 0.849 0.838 0.805 0.912 0.645 0.837 0.910 0.888
Bold text denotes the best results for each evaluation indicator while underlined text denote the second best performance
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Table 3  Experimental results comparison of current methods on ISRUC-S1 dataset
Paper Models Overall results F1-score of different sleep stages

Accuracy F1-score Kappa W N1 N2 N3 REM
Alickovic et al. [9] SVM 0.684 0.608 0.583 0.793 0.242 0.708 0808 0.490
Memar et al. [25] RF 0.699 0.649 0.607 0.841 0.307 0.705 0.750 0.640
Dong et al. [15] MLP + LSTM 0.703 0.648 0.614 0.807 0.301 0.724 0.817 0.591
Supratak et al [16]. CNN + BiLSTM 0.717 0.691 0.638 0.823 0.466 0.738 0.809 0.621
Supratak&YiKe [21] CNN + RNN 0.778 0.758 0.714 0.883 0.532 0.764 0.848 0.763
Perslev et al. [22] U-Net 0.770 0.770 – 0.890 0.520 0.790 0.770 0.880
Jia et al. [18] STGCN 0.786 0.754 0.723 0.884 0.437 0.775 0.838 0.835
Jia et al. [19] MSTGCN 0.804 0.785 0.748 0.887 0.545 0.791 0.872 0.832
Li et al. [20] MVF-SleepNet 0.821 0.802 0.768 0.908 0.562 0.811 0.871 0.857
Proposed model MSF-SleepNet 0.826 0.809 0.774 0.912 0.570 0.812 0.884 0.865
Bold text denotes the best results for each evaluation indicator while underlined text denotes the second best performance

Fig. 4  Example hypnograms of ground truth (top) and prediction (bottom)

 

Fig. 3  Confusion matrices of the 10-fold cross-validation on ISRUC-S3 dataset (left) and ISRUC-S1 dataset (right)
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between the true hypnogram and prediction hypnogram. 
Meanwhile, the similarity of the N1 stages is the lowest 
of all stages. Our method can correctly identify most 
stage transitions, such as W–N1, N2–N3, and N1–N2 
transitions.

In order to analyze the computation complexity of our 
proposed model, we introduce two evaluation metrics: 
parameter size and floating-point operations (FLOPs). 
The parameter size reflects the total number of model 
parameters and serves as an indicator of the model’s 
suitability for deployment on storage-constrained edge 
devices. FLOPs quantify the computational workload 
required for MSF-SleepNet to perform classification 
tasks. Each of these metrics provides valuable insights 
into different aspects of the model’s performance and 
resource requirements. Detailed results are shown in 
Table  4. From the data in the table, parameter size, 
FLOPs and training time of MSF-SleepNet are 5.25  M, 
206.24  M and 54400s respectively. Taken together, the 
lower parameter size, FLOPs, and training time make the 
model MSF-SleepNet more suitable for deployment in 
resource-limited environments, improving the utility and 
availability of the model, while also leading to higher effi-
ciency and lower energy consumption. At the same time, 
in order to show the advantages of our proposed model 
in low computational complexity, we also compared 
the FLOPs metric in ISRUC dataset with other sleep 
stage classification models, and the comparison results 
are shown in the Table 5. In order to facilitate the com-
parison, we unified the unit of FLOPs. According to the 
results in the table, compared with the current cutting-
edge sleep stage classification methods, our proposed 
model achieves the lowest FLOPs, which further indi-
cates the superiority of MSF-SleepNet in computational 
complexity. It is proved that the model achieves a good 

balance between sleep stage classification performance 
and computational complexity.

Model interpretability
Although deep learning models have good performance, 
one of their main weaknesses is that they are black-box 
models, which makes them unusable in clinical settings. 
When it comes to the application of artificial intelligence 
in healthcare and medicine, people generally pay atten-
tion to the potential of deep learning algorithms. Under-
standing the underlying mechanisms of these models and 
improving their interpretability can help sleep specialists 
make more reliable and confident decisions.

In our study, Local Interpretable Model-Agnostic 
Explanations (LIME) [51] is used as an interpretability 
tool to explain the outputs of our proposed model. The 
LIME is a post-hoc interpretability tool. LIME explains 
the behavior of the black-box model based on a linear 
model around the instance of interest [52]. LIME needs 
data instances and trained model as input. The signal 
input is perturbed, and the trained model produces a 
prediction of the data instance. LIME determines the 
attributes and their values that play an important role in 
generating a particular prediction.

Experiments are performed to verify the predictions of 
our model for each sleep stage. Two examples of LIME 
outputs are displayed in Fig.  5. In our experiments, we 
set the number of features as 10. The y-axis shows the 10 
features that are predicted to have the greatest impact on 
the corresponding class and their corresponding value 
ranges. The x-axis displays the predicted weight value of 
each feature on the corresponding class. The right bars 
represent important features that make the model pre-
diction for this class, while the left ones represent fea-
tures predicted for other classes; Bar lengths represent 
the weight given to each prediction. Figure  5 demon-
strates the true predictions of our model and their cor-
responding significant features.

In Fig. 6, we visualize the input data and the 10 impor-
tant features of their corresponding LIME outputs. The 
input data is PSG signals after a short-time Fourier 
transform.

There are five main brain waves of EEG signals dif-
ferentiated by different frequency bands; from low to 
high frequency, these bands are δ (delta, 0.16–3.99 Hz), 
θ (theta, 4–7.99  Hz), α (alpha, 8–11.99  Hz), σ (sigma, 
12–15.99  Hz), and β (beta, 16–30  Hz) [25]. According 
to the AASM manual, these five frequency bands are 
highly indicative for each specific sleep stage. Table 6 dis-
plays this indicative relevance in the frequency domain. 
In order to determine whether the predictions of our 
model conform to this domain knowledge, we perform 
frequency domain occlusion [53] on EEG signals and 
investigate the change in prediction results during the 

Table 4  Computational analysis of MSF-SleepNet
Parameter size FLOPs Training time
5.25 M 206.24M 54400s

Table 5  Comparison of FLOPs of MSF-SleepNet with other 
models
Models FLOPs
AlexNet [41] 0.72G
SqueezeNet [42] 0.82G
SleepPrintNet [43] 48.31G
AttnSleepNet [44] 26.26G
SalientSleepNet [45] 226.92G
MMASleepNet [46] 18.23G
DynamicSleepNet [47] 12.46G
StAGN [48] 7.98G
Diff-SleepNet [49] 1.42G
cVAN [50] 0.47G
MSF-SleepNet 0.21G
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occlusion process. According to the domain knowledge, 
omitting some frequency bands of EEG signals may 
result in a decrease in prediction accuracy for certain 
sleep stages. We occlude one or several frequency bands 
in our experiments at a time. Concretely, a band-stop fil-
ter is used to delete a specific frequency in a given range.

Figure 7 shows the confusion matrix results of our fre-
quency domain occlusion experiments. When removing 
δ frequencies, the prediction accuracy for N3 is signifi-
cantly decreased. This shows that δ is the characteristic 
frequency band of N3, which conforms to the domain 
knowledge presented in Table 6. While omitting θ fre-
quencies in occlusion experiments, it is clear that the 
accurate predictions of N1, N2, and REM reduce more 

than for the other two sleep stages. This shows that θ is 
the characteristic frequency band of N1, N2, and REM, 
which is consistent with the AASM manual. Further-
more, we occlude several frequency bands at a time to 
investigate the effect on predictions for each sleep stage. 
If occluding α, β, and σ frequencies, the prediction accu-
racies of W and N2 decrease. This shows that α, β, and 
σ jointly influence the prediction of W and N2 stages, 
which conforms with the AASM manual. When we omit 
θ and α frequencies, the TPR of W, N1, and N2 achieves 
decreases by 2–3%. Therefore, θ and α play important 
roles in predicting these sleep stages; this result is in 
accordance with that presented in Table 6. A similar con-
clusion can be found when we remove θ and σ frequen-
cies: the TPR of N2 obviously decreases more than that 
of the other stages. This shows that θ and σ are the char-
acteristic frequency bands of N2; this finding also aligns 
with the AASM manual.

Table 6  The characteristic frequency bands of different sleep 
stages in frequency domain
Sleep stages W N1 N2 N3 REM
Frequency domain α, σ, β θ, α θ, σ δ θ, α

Fig. 6  Input data shows a N2 stage and an REM stage

 

Fig. 5  LIME outputs of two instances predicted as N2 and REM
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Ablation experiments
To validate the effect of each module in our network, we 
decompose our interpretable multi-stream fusion net-
work into five independent parts. Then, we design abla-
tion experiments to verify the validity of each part. Each 
variant module is constructed as described below.

 	• Module A (SFNet): 1-D convolution neural network 
named SFNet is employed as the base model in our 
ablation experiments.

 	• Module B (+SleepCL): A contrastive learning 
method is applied to the SFNet into SCLNet.

 	• Module C (+Graph Learning, Attention Mechanism, 
Chebyshev Graph and Temporal Convolution): On 
the basis of SCLNet, a temporal and spatial attention 
mechanism, graph structure learning, Chebyshev 
graph convolution neural network, and temporal 
convolution are added to construct the first stream 
of our fusion model.

 	• Module D (+STFT and VGG-16): Based on module 
C, the short-time Fourier transform and VGG-16 are 

appended to fuse the first and second streams of the 
model.

 	• Module E (+Five-Timestep Features, GRU, and GRU 
Attention Mechanism): On the basis of module D, 
five-timestep features are fed to a GRU and GRU 
attention mechanism to build the whole of our 
model.

These five modules play key roles in our proposed model, 
as illustrated in Figs. 8 and 9. As seen in Fig. 8, with the 
continuous fusion of modules, the three evaluation met-
rics gradually increase. From modules A to E, the over-
all accuracy is 0.784, 0.813, 0.821, 0.831, and 0.849, and 
the F1-scores are 0.762, 0.796, 0.807, 0.818, and 0.838, 
respectively. Lastly, Kappa scores are 0.723, 0.759, 0.769, 
0.782, and 0.805, respectively. To sum up, these results 
demonstrate the validity of each module. The same con-
clusion is illustrated in Fig. 9, where we see an increase in 
F1-score for each class’ classification from modules A to 
E. For example, the F1-scores for classifying the N3 stage 
are 0.866, 0.886, 0.888, 0.899, and 0.910, respectively. The 
same rising trend was observed for the other four sleep 

Fig. 7  Frequency domain occlusion. Confusion matrices with five frequency bands all present (upper left) or occluding one or several concrete bands 
(all other images)
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stages. This further shows the effectiveness of each mod-
ule in our network.

Conclusion
In this study, we propose an interpretable multi-stream 
fusion network with contrastive learning for sleep stage 
classification. This network is named MSF-SleepNet, 
which is composed of three parts: a spatial–temporal 
feature extractor, a spectral–temporal feature extractor, 
and a sleep stage classifier. The spatial–temporal feature 
extractor is composed of Chebyshev graph convolution 
and temporal convolution to obtain spatial–temporal fea-
tures from body-topological information. For the spec-
tral–temporal feature extractor, STFT and a GRU are 
utilized to learn the spectral–temporal features. By fusing 
the spatial–temporal and spectral–temporal features, the 
sleep stage classifier uses a contrastive learning scheme to 
enhance differences in feature patterns of sleep monitor-
ing signals across various sleep stages. LIME is employed 
to improve MSF-SleepNet’s interpretability. The experi-
mental results show that MSF-SleepNet outperforms 
cutting-edge methods: it has an accuracy of 0.849 and 

F1-score of 0.838 on the ISRUC-S3 dataset, and an accu-
racy of 0.826 and F1-score of 0.809 on the ISRUC-S1 
dataset. Our study demonstrates that fusing multiple fea-
tures from heterogeneous additional information can sig-
nificantly improve sleep stage classification performance. 
In addition, the interpretability analysis of MSF-SleepNet 
further illustrates its reliability and transparency; more-
over, the model’s predicted output is in accordance with 
the AASM manual and domain knowledge.
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